High-throughput experiments facilitate materials innovation:A review
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-throughput experiments facilitate materials innovation:A review
  • 作者:LIU ; Yi ; Hao ; HU ; ZiHeng ; SUO ; ZhiGuang ; HU ; LianZhe ; FENG ; LingYan ; GONG ; XiuQing ; LIU ; Yi ; ZHANG ; JinCang
  • 英文作者:LIU Yi Hao;HU ZiHeng;SUO ZhiGuang;HU LianZhe;FENG LingYan;GONG XiuQing;LIU Yi;ZHANG JinCang;Materials Genome Institute, Shanghai University;Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University;
  • 英文关键词:Material Genome Initiative(MGI);;high-throughput material development;;materials synthesis;;materials characterization
  • 中文刊名:JEXG
  • 英文刊名:中国科学:技术科学(英文版)
  • 机构:Materials Genome Institute, Shanghai University;Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University;
  • 出版日期:2019-02-25 15:22
  • 出版单位:Science China(Technological Sciences)
  • 年:2019
  • 期:v.62
  • 基金:supported by the Shanghai Sailing Program(Grant No.17YF1405700);; the Shanghai Pujiang Program(Grant No.17PJ1402800);; the National Natural Science Foundation of China(Grant No.21705106);; the support of the Shanghai Institute of Materials Genome from the Shanghai Municipal Science,and the Technology Commission;; the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institution of Higher Learning(Grant No.TP2016023)
  • 语种:英文;
  • 页:JEXG201904001
  • 页数:25
  • CN:04
  • ISSN:11-5845/TH
  • 分类号:5-29
摘要
Since the Material Genome Initiative(MGI) was proposed, high-throughput based technology has been widely employed in various fields of materials science. As a theoretical guide, material informatics has been introduced based on machine learning and data mining and high-throughput computation has been employed for large scale search, narrowing down the scope of the experiment trials. High-throughput materials experiments including synthesis, processing, and characterization technologies have become valuable research tools to pin down the prediction experimentally, enabling the discovery-to-deployment of advances materials more efficiently at a fraction of cost. This review aims to summarize the recent advances of high-throughput materials experiments and introduce briefly the development of materials design based on material genome concept. By selecting representative and classic works in the past years, various high-throughput preparation methods are introduced for different types of material gradient libraries, including metallic, inorganic materials, and polymers. Furthermore, high-throughput characterization approaches are comprehensively discussed, including both their advantages and limitations. Specifically, we focus on high-throughput mass spectrometry to analyze its current status and challenges in the application of catalysts screening.
        Since the Material Genome Initiative(MGI) was proposed, high-throughput based technology has been widely employed in various fields of materials science. As a theoretical guide, material informatics has been introduced based on machine learning and data mining and high-throughput computation has been employed for large scale search, narrowing down the scope of the experiment trials. High-throughput materials experiments including synthesis, processing, and characterization technologies have become valuable research tools to pin down the prediction experimentally, enabling the discovery-to-deployment of advances materials more efficiently at a fraction of cost. This review aims to summarize the recent advances of high-throughput materials experiments and introduce briefly the development of materials design based on material genome concept. By selecting representative and classic works in the past years, various high-throughput preparation methods are introduced for different types of material gradient libraries, including metallic, inorganic materials, and polymers. Furthermore, high-throughput characterization approaches are comprehensively discussed, including both their advantages and limitations. Specifically, we focus on high-throughput mass spectrometry to analyze its current status and challenges in the application of catalysts screening.
引文
1 Holdren J P.Materials Genome Initiative for Global Competitiveness.Report.White House Office of Science and Technology Policy,2011
    2 Jain A,Ong S P,Hautier G,et al.Commentary:The materials project:A materials genome approach to accelerating materials innovation.APL Mater,2013,1:011002
    3 Green M L,Choi C L,Hattrick-Simpers J R,et al.Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies.Appl Phys Rev,2017,4:011105
    4 Wang H,Wang H,Ding H,et al.Progress in high-throughput materials synthesis and characterization.Sci Technol Rev,2015,33:31-49
    5 Kennedy K,Stefansky T,Davy G,et al.Rapid method for determining ternary-alloy phase diagrams.J Appl Phys,1965,36:3808-3810
    6 Hanak J J.The“multiple-sample concept”in materials research:Synthesis,compositional analysis and testing of entire multicomponent systems.J Mater Sci,1970,5:964-971
    7 Thomas R,Moulijn J A,De Beer V H J,et al.Structure/metathesis activity relations of silica supported molybdenum and tungsten oxide.J Mol Catal,1980,8:161-174
    8 Xiang X D,Sun X,Brice?o G,et al.A combinatorial approach to materials discovery.Science,1995,268:1738-1740
    9 Danielson E,Golden J H,McFarland E W,et al.A combinatorial approach to the discovery and optimization of luminescent materials.Nature,1997,389:944-948
    10 Merrifield R B.Solid phase peptide synthesis.I.The synthesis of a tetrapeptide.J Am Chem Soc,1963,85:2149-2154
    11 Orschel M,Klein J,Schmidt H W,et al.Detection of reaction selectivity on catalyst libraries by spatially resolved mass spectrometry.Angew Chem Int Ed,1999,38:2791-2794
    12 Senkan S,Krantz K,Ozturk S,et al.High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry.Angew Chem Int Ed,1999,38:2794-2799
    13 Jandeleit B,Schaefer D J,Powers T S,et al.Combinatorial materials science and catalysis.Angew Chem Int Ed,1999,38:2494-2532
    14 Senkan S.Combinatorial heterogeneous catalysis-A new path in an old field.Angew Chem Int Ed,2001,40:312-329
    15 Senkan S M.High-throughput screening of solid-state catalyst libraries.Nature,1998,394:350-353
    16 Wang J,Yoo Y,Gao C,et al.Identification of a blue photoluminescent composite material from a combinatorial library.Science,1998,279:1712-1714
    17 Sun X D,Wang K A,Yoo Y,et al.Solution-phase synthesis of luminescent materials libraries.Adv Mater,1997,9:1046-1049
    18 Zhao J C,Jackson M R,Peluso L A,et al.A diffusion multiple approach for the accelerated design of structural materials.MRSBull,2002,27:324-329
    19 McDowell D L,Olson G B.Concurrent design of hierarchical materials and structures.Sci Model Simul,2008,15:207-240
    20 Potyrailo R A,Mirsky V M.Combinatorial and high-throughput development of sensing materials:The first 10 years.Chem Rev,2008,108:770-813
    21 de Jong M,Chen W,Angsten T,et al.Charting the complete elastic properties of inorganic crystalline compounds.Sci Data,2015,2:150009
    22 de Jong M,Chen W,Geerlings H,et al.A database to enable discovery and design of piezoelectric materials.Sci Data,2015,2:150053
    23 Ong S P,Wang L,Kang B,et al.Li-Fe-P-O2phase diagram from first principles calculations.Chem Mater,2008,20:1798-1807
    24 Ong S P,Richards W D,Jain A,et al.Python materials genomics(pymatgen):A robust,open-source python library for materials analysis.Comput Mater Sci,2013,68:314-319
    25 Jain A,Ong S P,Chen W,et al.FireWorks:A dynamic workflow system designed for high-throughput applications.Concurrency Computat-Pract Exper,2015,27:5037-5059
    26 Zhou F,Cococcioni M,Marianetti C A,et al.First-principles prediction of redox potentials in transition-metal compounds with LDA+U.Phys Rev B,2004,70:235121
    27 Wang L,Maxisch T,Ceder G.A first-principles approach to studying the thermal stability of oxide cathode materials.Chem Mater,2007,19:543-552
    28 Ong S P,Jain A,Hautier G,et al.Thermal stabilities of delithiated olivine MPO4(M=Fe,Mn)cathodes investigated using first principles calculations.Electrochem Commun,2010,12:427-430
    29 Adams S,Rao R P.High power lithium ion battery materials by computational design.Phys Status Solidi A,2011,208:1746-1753
    30 Hautier G,Fischer C,Ehrlacher V,et al.Data mined ionic substitutions for the discovery of new compounds.Inorg Chem,2011,50:656-663
    31 Qu X,Jain A,Rajput N N,et al.The Electrolyte Genome project:Abig data approach in battery materials discovery.Comput Mater Sci,2015,103:56-67
    32 Persson K A,Waldwick B,Lazic P,et al.Prediction of solid-aqueous equilibria:Scheme to combine first-principles calculations of solids with experimental aqueous states.Phys Rev B,2012,85:235438
    33 Singh A K,Zhou L,Shinde A,et al.Electrochemical stability of metastable materials.Chem Mater,2017,29:10159-10167
    34 Ceder G.Opportunities and challenges for first-principles materials design and applications to Li battery materials.MRS Bull,2010,35:693-701
    35 Hautier G,Jain A,Ong S P,et al.Phosphates as lithium-ion battery cathodes:An evaluation based on high-throughput ab initio calculations.Chem Mater,2011,23:3495-3508
    36 Kamaya N,Homma K,Yamakawa Y,et al.A lithium superionic conductor.Nat Mater,2011,10:682-686
    37 Seino Y,Ota T,Takada K,et al.A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries.Energy Environ Sci,2014,7:627-631
    38 Wang Y,Richards W D,Bo S H,et al.Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11(X=O,S,Se).Chem Mater,2017,29:7475-7482
    39 Greeley J,Jaramillo T F,Bonde J,et al.Computational highthroughput screening of electrocatalytic materials for hydrogen evolution.Nat Mater,2006,5:909-913
    40 Lin L C,Berger A H,Martin R L,et al.In silico screening of carboncapture materials.Nat Mater,2012,11:633-641
    41 Armiento R,Kozinsky B,Fornari M,et al.Screening for high-performance piezoelectrics using high-throughput density functional theory.Phys Rev B,2011,84:014103
    42 Wang S,Wang Z,Setyawan W,et al.Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations.Phys Rev X,2011,1:021012
    43 Curtarolo S,Setyawan W,Wang S,et al.Aflowlib.Org:A distributed materials properties repository from high-throughput ab initio calculations.Comput Mater Sci,2012,58:227-235
    44 Xi L,Pan S,Li X,et al.Discovery of high-performance thermoelectric chalcogenides through reliable high-throughput material screening.J Am Chem Soc,2018,140:10785-10793
    45 Raccuglia P,Elbert K C,Adler P D F,et al.Machine-learningassisted materials discovery using failed experiments.Nature,2016,533:73-76
    46 Esteva A,Kuprel B,Novoa R A,et al.Dermatologist-level classification of skin cancer with deep neural networks.Nature,2017,542:115-118
    47 Kusne A G,Keller D,Anderson A,et al.High-throughput determination of structural phase diagram and constituent phases using grendel.Nanotechnology,2015,26:444002
    48 Liu Y,Zhao T,Ju W,et al.Materials discovery and design using machine learning.J Materiomics,2017,3:159-177
    49 Gajewski J,Sadowski T.Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating artificial neural networks and finite element method.Comput Mater Sci,2014,82:114-117
    50 Liu Y,Zhao T,Yang G,et al.The onset temperature(Tg)of AsxSe1-x glasses transition prediction:A comparison of topological and regression analysis methods.Comput Mater Sci,2017,140:315-321
    51 Shi S Q,Gao J,Liu Y,et al.Multi-scale computation methods:Their applications in lithium-ion battery research and development.Chin Phys B,2016,25:018212
    52 LeSar R.Materials informatics:An emerging technology for materials development.Statistical Anal Data Min,2009,1:372-374
    53 Kalidindi S R,De Graef M.Materials data science:Current status and future outlook.Annu Rev Mater Res,2015,45:171-193
    54 Meredig B,Agrawal A,Kirklin S,et al.Combinatorial screening for new materials in unconstrained composition space with machine learning.Phys Rev B,2014,89:094104
    55 Hattrick-Simpers J R,Gregoire J M,Kusne A G.Perspective:Composition-structure-property mapping in high-throughput experiments:Turning data into knowledge.APL Mater,2016,4:053211
    56 Pilania G,Wang C,Jiang X,et al.Accelerating materials property predictions using machine learning.Sci Rep,2013,3:2810
    57 Rar A,Frafjord J J,Fowlkes J D,et al.PVD synthesis and highthroughput property characterization of Ni-Fe-Cr alloy libraries.Meas Sci Technol,2005,16:46-53
    58 Müller C M,Sologubenko A S,Gerstl S S A,et al.Nanoscale Cu/Ta multilayer deposition by co-sputtering on a rotating substrate.Empirical model and experiment.Surf Coatings Tech,2016,302:284-292
    59 Bahrami A,álvarez J P,Depablos-Rivera O,et al.Compositional and tribo-mechanical characterization of Ti-Ta coatings prepared by confocal dual magnetron Co-sputtering.Adv Eng Mater,2018,20:1700687
    60 Wang X,Rogalla D,Ludwig A.Influences of W content on the phase transformation properties and the associated stress change in thin film substrate combinations studied by fabrication and characterization of thin film V1-xWxO2materials libraries.ACS Comb Sci,2018,20:229-236
    61 Voith M,Mardare A I,Hassel A W.Synthesis and characterization of Al-Mg-Zn thin film alloys co-deposited from vapour phase.Phys Status Solidi A,2013,210:1000-1005
    62 Mao S S.High throughput growth and characterization of thin film materials.J Cryst Growth,2013,379:123-130
    63 L?bel R,Thienhaus S,Savan A,et al.Combinatorial fabrication and high-throughput characterization of a Ti-Ni-Cu shape memory thin film composition spread.Mater Sci Eng-A,2008,481-482:151-155
    64 Thienhaus S,Naujoks D,Pfetzing-Micklich J,et al.Rapid identification of areas of interest in thin film materials libraries by combining electrical,optical,X-ray diffraction,and mechanical highthroughput measurements:A case study for the system Ni-Al.ACSComb Sci,2014,16:686-694
    65 Motemani Y,Khare C,Savan A,et al.Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition.Nanotechnology,2016,27:495604
    66 Xiang X D,Wang G,Zhang X,et al.Individualized pixel synthesis and characterization of combinatorial materials chips.Engineering,2015,1:225-233
    67 Xing H,Zhao B,Wang Y,et al.Rapid construction of Fe-Co-Ni composition-phase map by combinatorial materials chip approach.ACS Comb Sci,2018,20:127-131
    68 Maier W F,St?we K,Sieg S.Combinatorial and high-throughput materials science.Angew Chem Int Ed,2007,46:6016-6067
    69 Decker P,Naujoks D,Langenk?mper D,et al.High-throughput structural and functional characterization of the thin film materials system Ni-Co-Al.ACS Comb Sci,2017,19:618-624
    70 Cooper J S,McGinn P J.Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode.J Power Sources,2006,163:330-338
    71 Cooper J S,McGinn P J.Combinatorial screening of fuel cell cathode catalyst compositions.Appl Surf Sci,2007,254:662-668
    72 Cooper J S,Jeon M K,McGinn P J.Combinatorial screening of ternary Pt-Ni-Cr catalysts for methanol electro-oxidation.Electrochem Commun,2008,10:1545-1547
    73 Jeon M K,Cooper J S,McGinn P J.Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach.JPower Sources,2008,185:913-916
    74 Zhang Y,McGinn P J.Combinatorial screening for methanol oxidation catalysts in alloys of Pt,Cr,Co and V.J Power Sources,2012,206:29-36
    75 McGinn P J.Combinatorial electrochemistry-Processing and characterization for materials discovery.Mater Discovery,2015,1:38-53
    76 Ocylok S,Weisheit A,Kelbassa I.Functionally graded multi-layers by laser cladding for increased wear and corrosion protection.Phys Procedia,2010,5:359-367
    77 Knoll H,Ocylok S,Weisheit A,et al.Combinatorial alloy design by laser additive manufacturing.steel Res int,2016,88:1600416
    78 Herzog D,Seyda V,Wycisk E,et al.Additive manufacturing of metals.Acta Mater,2016,117:371-392
    79 Hebert R J.Viewpoint:Metallurgical aspects of powder bed metal additive manufacturing.J Mater Sci,2016,51:1165-1175
    80 Hofmann D C,Roberts S,Otis R,et al.Developing gradient metal alloys through radial deposition additive manufacturing.Sci Rep,2014,4:5357-5365
    81 Zhao J C,Jackson M R,Peluso L A.Mapping of the Nb-Ti-Si phase diagram using diffusion multiples.Mater Sci Eng-A,2004,372:21-27
    82 Zhao J C,Xu Y,Hartmann U.Measurement of an iso-curie temperature line of a Co-Cr-Mo solid solution by magnetic force microscopy imaging on a diffusion multiple.Adv Eng Mater,2013,15:321-324
    83 Zhao J C,Peluso L A,Jackson M R,et al.Phase diagram of the NbAl-Si ternary system.J Alloys Compd,2003,360:183-188
    84 Zhao J C,Jackson M R,Peluso L A.Determination of the Nb-Cr-Si phase diagram using diffusion multiples.Acta Mater,2003,51:6395-6405
    85 Zhao J C.Reliability of the diffusion-multiple approach for phase diagram mapping.J Mater Sci,2004,39:3913-3925
    86 Zhao J C,Jackson M R,Peluso L A.Evaluation of phase relations in the Nb-Cr-Al system at 1000°C using a diffusion-multiple approach.J Phase Equil Diff,2004,25:152-159
    87 Shastry V V,Divya V D,Azeem M A,et al.Combining indentation and diffusion couple techniques for combinatorial discovery of high temperature shape memory alloys.Acta Mater,2013,61:5735-5742
    88 Zhou L,Giri A,Cho K,et al.Mechanical anomaly observed in NiMn-Ga alloys by nanoindentation.Acta Mater,2016,118:54-63
    89 Huang S,Zhang X,Jiang Y,et al.Experimental investigation of TiNb-Co ternary system at 1000°C.Mater Des,2017,115:170-178
    90 Zhao J.Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships.Prog Mater Sci,2006,51:557-631
    91 Zhao J C,Zheng X,Cahill D G.High-throughput diffusion multiples.Mater Today,2005,8:28-37
    92 Milenkovic S,Rahimian M,Sabirov I.A novel high-throughput technique for establishing the solidification-microstructure relationships.Metall Materi Trans B,2013,45:482-488
    93 Weaver J S,Khosravani A,Castillo A,et al.High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples.Integr Mater Manuf Innov,2016,5:1-20
    94 Chen P C,Liu X,Hedrick J L,et al.Polyelemental nanoparticle libraries.Science,2016,352:1565-1569
    95 Yao Y,Huang Z,Xie P,et al.Carbothermal shock synthesis of highentropy-alloy nanoparticles.Science,2018,359:1489-1494
    96 Fenton J L,Steimle B C,Schaak R E.Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries.Science,2018,360:513-517
    97 Akinc A,Lynn D M,Anderson D G,et al.Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery.J Am Chem Soc,2003,125:5316-5323
    98 Hao J,Kos P,Zhou K,et al.Rapid synthesis of a lipocationic polyester library via ring-opening polymerization of functional valerolactones for efficacious sirna delivery.J Am Chem Soc,2015,137:9206-9209
    99 Zha Z,Hu Y,Mukerabigwi J F,et al.Thiolactone chemistry-based combinatorial methodology to construct multifunctional polymers for efficacious gene delivery.Bioconjugate Chem,2018,29:23-28
    100 Anderson D G,Peng W,Akinc A,et al.A polymer library approach to suicide gene therapy for cancer.Proc Natl Acad Sci USA,2004,101:16028-16033
    101 Anderson D,Tweedie C,Hossain N,et al.A combinatorial library of photocrosslinkable and degradable materials.Adv Mater,2006,18:2614-2618
    102 Xue H,Zhao Y,Wu H,et al.Multicomponent combinatorial polymerization via the biginelli reaction.J Am Chem Soc,2016,138:8690-8693
    103 Cosson S,Danial M,Saint-Amans J R,et al.Accelerated combinatorial high throughput star polymer synthesis via a rapid one-pot sequential aqueous raft(rosa-raft)polymerization scheme.Macromol Rapid Commun,2017,38:1600780
    104 Potyrailo R A,Wroczynski R J,Pickett J E,et al.High-throughput fabrication,performance testing,and characterization of one-dimensional libraries of polymeric compositions.Macromol Rapid Commun,2003,24:123-130
    105 Gallant F M,Bruck H A,Kota A K.Fabrication of particle-reinforced polymers with continuous gradient architectures using twin screw extrusion process.J Composite Mater,2004,38:1873-1893
    106 Carson Meredith J,Karim A,Amis E J.Combinatorial methods for investigations in polymer materials science.MRS Bull,2002,27:330-335
    107 Stafford C M,Roskov K E,Epps Iii T H,et al.Generating thickness gradients of thin polymer films via flow coating.Rev Sci Instruments,2006,77:023908
    108 Meredith J C,Smith A P,Karim A,et al.Combinatorial materials science for polymer thin-film dewetting.Macromolecules,2000,33:9747-9756
    109 Kelly J Y,Albert J N L,Howarter J A,et al.Investigation of thermally responsive block copolymer thin film morphologies using gradients.ACS Appl Mater Interfaces,2010,2:3241-3248
    110 Ding Y,Qi H J,Alvine K J,et al.Stability and surface topography evolution in nanoimprinted polymer patterns under a thermal gradient.Macromolecules,2010,43:8191-8201
    111 Smith A P,Sehgal A,Douglas J F,et al.Combinatorial mapping of surface energy effects on diblock copolymer thin film ordering.Macromol Rapid Commun,2003,24:131-135
    112 Lawrence N T,Kehoe J M,Hoffman D B,et al.Combinatorial mapping of substrate step edge effects on diblock copolymer thin film morphology and orientation.Macromol Rapid Commun,2010,31:1003-1009
    113 Briceno G,Chang H,Sun X,et al.A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis.Science,1995,270:273-275
    114 Sun X D,Gao C,Wang J,et al.Identification and optimization of advanced phosphors using combinatorial libraries.Appl Phys Lett,1997,70:3353-3355
    115 Chang H,Gao C,Takeuchi I,et al.Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications.Appl Phys Lett,1998,72:2185-2187
    116 Mao S S.High throughput combinatorial screening of semiconductor materials.Appl Phys A,2011,105:283-288
    117 Kim K W,Kim T S,Jeon M K,et al.Ferroelectric properties of Bi4-xCexTi3O12(0    118 Gremaud R,Broedersz C,Borsa D,et al.Hydrogenography:An optical combinatorial method to find new light-weight hydrogenstorage materials.Adv Mater,2007,19:2813-2817
    119 Dam B,Gremaud R,Broedersz C,et al.Combinatorial thin film methods for the search of new lightweight metal hydrides.Scripta Mater,2007,56:853-858
    120 Barcelo S,Mao S S.High throughput optical characterization of alloy hydrogenation.Int J Hydrogen Energy,2010,35:7228-7231
    121 Ding S,Liu Y,Li Y,et al.Combinatorial development of bulk metallic glasses.Nat Mater,2014,13:494-500
    122 Ding S,Gregoire J,Vlassak J J,et al.Solidification of Au-Cu-Si alloys investigated by a combinatorial approach.J Appl Phys,2012,111:114901
    123 Liu Y,Padmanabhan J,Cheung B,et al.Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.Sci Rep,2016,6:26950
    124 Li Y,Jensen K E,Liu Y,et al.Combinatorial strategies for synthesis and characterization of alloy microstructures over large compositional ranges.ACS Comb Sci,2016,18:630-637
    125 Etiemble A,Der Loughian C,Apreutesei M,et al.Innovative Zr-CuAg thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications.J Alloys Compd,2017,707:155-161
    126 Frost S,Guérin S,Hayden B E,et al.High-Throughput synthesis and characterization of Eu doped BaxSr2-xSiO4thin film phosphors.ACSComb Sci,2018,20:451-460
    127 Perkins J D,del Cueto J A,Alleman J L,et al.Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films.Thin Solid Films,2002,411:152-160
    128 Schenck P K,Klamo J L,Bassim N D,et al.Combinatorial study of the crystallinity boundary in the HfO2-TiO2-Y2O3system using pulsed laser deposition library thin films.Thin Solid Films,2008,517:691-694
    129 Olk C H,Tibbetts G G,Simon D,et al.Combinatorial preparation and infrared screening of hydrogen sorbing metal alloys.J Appl Phys,2003,94:720-725
    130 Olk C H.Combinatorial approach to material synthesis and screening of hydrogen storage alloys.Meas Sci Technol,2005,16:14-20
    131 Otani M,Lowhorn N D,Schenck P K,et al.A high-throughput thermoelectric power-factor screening tool for rapid construction of thermoelectric property diagrams.Appl Phys Lett,2007,91:132102
    132 Watanabe M,Kita T,Fukumura T,et al.High-throughput screening for combinatorial thin-film library of thermoelectric materials.JComb Chem,2008,10:175-178
    133 Otani M,Itaka K,Wong-Ng W,et al.Development of a highthroughput thermoelectric screening tool for combinatorial thin film libraries.Appl Surf Sci,2007,254:765-767
    134 Christen H M,Ohkubo I,Rouleau C M,et al.A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes.Meas Sci Technol,2005,16:21-31
    135 Christen H M,Silliman S D,Harshavardhan K S.Epitaxial superlattices grown by a PLD-based continuous compositional-spread technique.Appl Surf Sci,2002,189:216-221
    136 Christen H M,Silliman S D,Harshavardhan K S.Continuous compositional-spread technique based on pulsed-laser deposition and applied to the growth of epitaxial films.Rev Sci Instrum,2001,72:2673-2678
    137 O’Neill S A,Clark R J H,Parkin I P,et al.Anatase thin films on glass from the chemical vapor deposition of titanium(iv)chloride and ethyl acetate.Chem Mater,2003,15:46-50
    138 Guo Y,Zhang X,Han G.Investigation of structure and properties of N-doped TiO2thin films grown by APCVD.Mater Sci Eng-B,2006,135:83-87
    139 O’Neill S,Parkin I P,Clark J H,et al.Photocatalytically activeγ-WO3films from atmospheric pressure CVD of WOCl4with ethyl acetate or ethanol.Chem Vap Deposition,2004,10:136-141
    140 Xia B,Chen F,Campbell S A,et al.Combinatorial CVD of zirconium,hafnium,and tin oxide mixtures for applications as highmaterials.Chem Vap Deposition,2004,10:195-200
    141 Smith R C,Hoilien N,Roberts J,et al.Combinatorial chemical vapor deposition of metal dioxides using anhydrous metal nitrates.Chem Mater,2002,14:474-476
    142 Smith R C,Hoilien N,Chien J,et al.Combinatorial chemical vapor deposition.Achieving compositional spreads of titanium,tin,and hafnium oxides by balancing reactor fluid dynamics and depositions kinetics.ChemInform,2003,34:292-298
    143 Kafizas A,Parkin I P.The combinatorial atmospheric pressure chemical vapour deposition(CAPCVD)of a gradating N-doped mixed phase titania thin film.J Mater Chem,2010,20:2157
    144 Kafizas A,Hyett G,Parkin I P.Combinatorial atmospheric pressure chemical vapour deposition(CAPCVD)of a mixed vanadium oxide and vanadium oxynitride thin film.J Mater Chem,2009,19:1399-1408
    145 Kafizas A,Dunnill C W,Parkin I P.Combinatorial atmospheric pressure chemical vapour deposition(CAPCVD)of niobium doped anatase;effect of niobium on the conductivity and photocatalytic activity.J Mater Chem,2010,20:8336-8349
    146 Zhou J,Lin J,Huang X,et al.A library of atomically thin metal chalcogenides.Nature,2018,556:355-359
    147 Chen L,Bao J,Gao C,et al.Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a dropon-demand inkjet delivery system.J Comb Chem,2004,6:699-702
    148 Chan T S,Kang C C,Liu R S,et al.Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors.J Comb Chem,2007,9:343-346
    149 Okamura S,Takeuchi R,Shiosaki T.Fabrication of ferroelectric Pb(Zr,Ti)O3thin films with various Zr/Ti ratios by ink-jet printing.Jpn J Appl Phys,2002,41:6714-6717
    150 Bharathan J,Yang Y.Polymer electroluminescent devices processed by inkjet printing:I.Polymer light-emitting logo.Appl Phys Lett,1998,72:2660-2662
    151 Chen L,Chen K J,Lin C C,et al.Combinatorial approach to the development of a single mass YVO4:Bi3+,Eu3+phosphor with red and green dual colors for high color rendering white light-emitting diodes.J Comb Chem,2010,12:587-594
    152 Wang J,Mohebi M M,Evans J R G.Two methods to generate multiple compositions in combinatorial ink-jet printing of ceramics.Macromol Rapid Commun,2005,26:304-309
    153 Wang J,Evans J R G.Library preparation using an aspirating-dispensing ink-jet printer for combinatorial studies in ceramics.J Mater Res,2005,20:2733-2740
    154 Chen L,Luo A,Zhang Y,et al.Optimization of the single-phased white phosphor of Li2SrSiO4:Eu2+,Ce3+for light-emitting diodes by using the combinatorial approach assisted with the taguchi method.ACS Comb Sci,2012,14:636-644
    155 Haber J A,Guevarra D,Jung S,et al.Discovery of new oxygen evolution reaction electrocatalysts by combinatorial investigation of the Ni-La-Co-Ce oxide composition space.ChemElectroChem,2014,1:1613-1617
    156 Shinde A,Jones R J R,Guevarra D,et al.High-throughput screening for acid-stable oxygen evolution electrocatalysts in the(Mn-Co-TaSb)Oxcomposition space.Electrocatalysis,2015,6:229-236
    157 Liu X,Shen Y,Yang R,et al.Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration.Nano Lett,2012,12:5733-5739
    158 Pullar R C.Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate.ACS Comb Sci,2012,14:425-433
    159 García-Ca?adas J,Adkins N J E,McCain S,et al.Accelerated discovery of thermoelectric materials:Combinatorial facility and highthroughput measurement of thermoelectric power factor.ACS Comb Sci,2016,18:314-319
    160 Guram A,Hagemeyer A,Lugmair C,et al.Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis.Adv Synthesis Catal,2004,346:215-230
    161 Bergh S,Guan S,Hagemeyer A,et al.Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system.Appl Catal A-General,2003,254:67-76
    162 Moon H,Jeong S J,Lee Y T,et al.Preparation of a water-based Al/Fe/Mo catalyst using a microfluidic system.Chem Lett,2010,39:814-815
    163 Zhou J,Zeng J,Grant J,et al.On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies.Small,2011,7:3308-3316
    164 Carbonell C,Stylianou K C,Hernando J,et al.Femtolitre chemistry assisted by microfluidic pen lithography.Nat Commun,2013,4:2173
    165 Jin S H,Jeong H H,Lee B,et al.A programmable microfluidic static droplet array for droplet generation,transportation,fusion,storage,and retrieval.Lab Chip,2015,15:3677-3686
    166 Suga S,Okajima M,Fujiwara K,et al.“Cation flow”method:A new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems.J Am Chem Soc,2001,123:7941-7942
    167 Suga S,Okajima M,Fujiwara K,et al.Electrochemical combinatorial organic syntheses using microflow systems.QSAR Comb Sci,2005,24:728-741
    168 Nagaki A,Togai M,Suga S,et al.Control of extremely fast competitive consecutive reactions using micromixing.Selective friedelcrafts aminoalkylation.J Am Chem Soc,2005,127:11666-11675
    169 Saito K,Ueoka K,Matsumoto K,et al.Indirect cation-flow method:Flash generation of alkoxycarbenium ions and studies on the stability of glycosyl cations.Angew Chem Int Ed,2011,50:5153-5156
    170 Yudin A K,Siu T.Combinatorial electrochemistry.Curr Opin Chem Biol,2001,5:269-272
    171 Siu T,Li W,Yudin A K.Parallel electrosynthesis of 1,2-diamines.JComb Chem,2001,3:554-558
    172 Siu T,Li W,Yudin A K.Parallel electrosynthesis ofα-alkoxycarbamates,α-alkoxyamides,andα-alkoxysulfonamides using the spatially addressable electrolysis platform(saep).J Comb Chem,2000,2:545-549
    173 Gütz C,Kl?ckner B,Waldvogel S R.Electrochemical screening for electroorganic synthesis.Org Process Res Dev,2016,20:26-32
    174 Edinger C,Grimaudo V,Broekmann P,et al.Stabilizing lead cathodes with diammonium salt additives in the deoxygenation of aromatic amides.ChemElectroChem,2014,1:1018-1022
    175 Edinger C,Kulisch J,Waldvogel S R.Stereoselective cathodic synthesis of 8-substituted(1R,3R,4S)-menthylamines.Beilstein JOrg Chem,2015,11:294-301
    176 Edinger C,Waldvogel S R.Electrochemical deoxygenation of aromatic amides and sulfoxides.Eur J Org Chem,2014,2014:5144-5148
    177 Elsler B,Schollmeyer D,Dyballa K M,et al.Metal-and reagent-free highly selective anodic cross-coupling reaction of phenols.Angew Chem Int Ed,2014,114
    178 Elsler B,Wiebe A,Schollmeyer D,et al.Source of selectivity in oxidative cross-coupling of aryls by solvent effect of 1,1,1,3,3,3-hexafluoropropan-2-ol.Chem Eur J,2015,21:12321-12325
    179 Schulz L,Enders M,Elsler B,et al.Reagent-and metal-free anodic C-C cross-coupling of aniline derivatives.Angew Chem Int Ed,2017,56:4877-4881
    180 Hartmer M F,Waldvogel S R.Electroorganic synthesis of nitriles via a halogen-free domino oxidation-reduction sequence.Chem Commun,2015,51:16346-16348
    181 Gütz C,Selt M,B?nziger M,et al.A novel cathode material for cathodic dehalogenation of 1,1-dibromo cyclopropane derivatives.Chem Eur J,2015,21:13878-13882
    182 Gao C,Bao J,Luo Z,et al.Recent progresses in the combinatorial materials science.Acta Phys Chim Sin,2006,22:899-912
    183 Naujoks D,Richert J,Decker P,et al.Phase formation and oxidation behavior at 500°C in a Ni-Co-Al thin-film materials library.ACSComb Sci,2016,18:575-582
    184 Buenconsejo P J S,Siegel A,Savan A,et al.Preparation of 24ternary thin film materials libraries on a single substrate in one experiment for irreversible high-throughput studies.ACS Comb Sci,2012,14:25-30
    185 Buenconsejo P J S,Ludwig A.New Au-Cu-Al thin film shape memory alloys with tunable functional properties and high thermal stability.Acta Mater,2015,85:378-386
    186 Sliozberg K,Sch?fer D,Erichsen T,et al.High-throughput screening of thin-film semiconductor material libraries I:System development and case study for Ti-W-O.ChemSusChem,2015,8:1270-1278
    187 Meyer R,Sliozberg K,Khare C,et al.High-throughput screening of thin-film semiconductor material libraries II:Characterization of FeW-O libraries.ChemSusChem,2015,8:1279-1285
    188 Payne M A,Miller J B,Gellman A J.High-throughput characterization of early oxidation across AlxFeyNi1-x-ycomposition space.Corrosion Sci,2015,91:46-57
    189 Isaacs E D,Marcus M,Aeppli G,et al.Synchrotron X-ray microbeam diagnostics of combinatorial synthesis.Appl Phys Lett,1998,73:1820-1822
    190 Stoewe K,Maier W F,Weidenhof B.High-throughput materials discovery by inkjet-printing of composition spread libraries.MRSProc,2012,1425
    191 Ohtani M,Fukumura T,Kawasaki M,et al.Concurrent X-ray diffractometer for high throughput structural diagnosis of epitaxial thin films.Appl Phys Lett,2001,79:3594-3596
    192 Liu J,Liu Y,Gong P,et al.Combinatorial exploration of color in gold-based alloys.Gold Bull,2015,48:111-118
    193 Luo Z,Geng B,Bao J,et al.High-throughput X-ray characterization system for combinatorial materials studies.Rev Sci Instrum,2005,76:095105
    194 Wong-Ng W,Otani M,Levin I,et al.A phase relation study of Ba-Y-Cu-O coated-conductor films using the combinatorial approach.Appl Phys Lett,2009,94:171910
    195 Green M L,Schenck P K,Chang K S,et al.“Higher-κ”dielectrics for advanced silicon microelectronic devices:A combinatorial research study.MicroElectron Eng,2009,86:1662-1664
    196 Wang T,Wang L,Wang Q,et al.Pronounced plasticity caused by phase separation andβ-relaxation synergistically in Zr-Cu-Al-Mo bulk metallic glasses.Sci Rep,2017,7:1238
    197 Gregoire J M,McCluskey P J,Dale D,et al.Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses.Scripta Mater,2012,66:178-181
    198 McCluskey P J,Xiao K,Gregoire J M,et al.Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize NiTi-Hf high-temperature shape memory alloys.ThermoChim Acta,2015,603:53-62
    199 Gregoire J M,Van Campen D G,Miller C E,et al.High-throughput synchrotron X-ray diffraction for combinatorial phase mapping.JSynchrotron Rad,2014,21:1262-1268
    200 Pathak S,Shaffer J,Kalidindi S.Determination of an effective zeropoint and extraction of indentation stress-strain curves without the continuous stiffness measurement signal.Scripta Mater,2009,60:439-442
    201 Kalidindi S R,Pathak S.Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves.Acta Mater,2008,56:3523-3532
    202 Zarnetta R,Kneip S,Somsen C,et al.High-throughput characterization of mechanical properties of Ti-Ni-Cu shape memory thin films at elevated temperature.Mater Sci Eng-A,2011,528:6552-6557
    203 Weaver J S,Priddy M W,McDowell D L,et al.On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction.Acta Mater,2016,117:23-34
    204 Khosravani A,Cecen A,Kalidindi S R.Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals:Application to dualphase steels.Acta Mater,2017,123:55-69
    205 Smith A P,Douglas J F,Meredith J C,et al.Combinatorial study of surface pattern formation in thin block copolymer films.Phys Rev Lett,2001,87:015503
    206 Smith A P,Douglas J F,Meredith J C,et al.High-throughput characterization of pattern formation in symmetric diblock copolymer films.J Polym Sci B Polym Phys,2001,39:2141-2158
    207 Smith A P,Douglas J F,Amis E J,et al.Effect of temperature on the morphology and kinetics of surface pattern formation in thin block copolymer films.Langmuir,2007,23:12380-12387
    208 Beers K L,Douglas J F,Amis E J,et al.Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene.Langmuir,2003,19:3935-3940
    209 Zapata P,Su J,García A J,et al.Quantitative high-throughput screening of osteoblast attachment,spreading,and proliferation on demixed polymer blend micropatterns.Biomacromolecules,2007,8:1907-1917
    210 Mok M M,Torkelson J M.Imaging of phase segregation in gradient copolymers:Island and hole surface topography.J Polym Sci BPolym Phys,2012,50:189-197
    211 Luo M,Seppala J E,Albert J N L,et al.Manipulating nanoscale morphologies in cylinder-forming poly(styrene-b-isoprene-b-styrene)thin films using film thickness and substrate surface chemistry gradients.Macromolecules,2013,46:1803-1811
    212 Shelton C K,Epps III T H.Mapping substrate surface field propagation in block polymer thin films.Macromolecules,2016,49:574-580
    213 Johnson P M,Reynolds T B,Stansbury J W,et al.High throughput kinetic analysis of photopolymer conversion using composition and exposure time gradients.Polymer,2005,46:3300-3306
    214 Lin-Gibson S,Landis F A,Drzal P L.Combinatorial investigation of the structure-properties characterization of photopolymerized dimethacrylate networks.Biomaterials,2006,27:1711-1717
    215 l’Abee R,Li W,Goossens H,et al.Application of FTIR microscopy in combinatorial experimentation on polymer blends.Macromol Symp,2008,265:281-289
    216 Vogel B M,Cabral J T,Eidelman N,et al.Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers.J Comb Chem,2005,7:921-928
    217 Zhang Y,Mallapragada S K,Narasimhan B.A novel high throughput method to investigate polymer dissolution.Macromol Rapid Commun,2010,31:385-390
    218 Lauterbach J,Wittmann M,Küppers J.Adsorption of CO at Ni(100)surfaces:A FTIRAS-TDS study.Surf Sci,1992,279:287-296
    219 Lauterbach J,Wittmann M,Küppers J.A FTIRAS study of COadsorbed at Ni(100)surfaces.Berichte der Bunsengesellschaft für physikalische Chem,1993,97:326-328
    220 Fanson P T,Stradt M W,Delgass W N,et al.Infrared evidence for the existence of nitrate species on Cu-ZSM5 during isothermal rate oscillations in the decomposition of N2O.Catal Lett,2001,77:15-19
    221 Fanson P.FTIR analysis of storage behavior and sulfur tolerance in barium-based NOxstorage and reduction(NSR)catalysts.Appl Catal B-Environ,2003,46:393-413
    222 Pyrz W,Vijay R,Binz J,et al.Characterization of k-promoted Ru catalysts for ammonia decomposition discovered using highthroughput experimentation.Top Catal,2008,50:180-191
    223 Taylor B,Lauterbach J,Delgass W N.Gas-phase epoxidation of propylene over small gold ensembles on ts-1.Appl Catal A-General,2005,291:188-198
    224 Snively C M,Lauterbach J.Sampling accessories for the highthroughput analysis of combinatorial libraries using spectral imaging.Spectroscopy,2002,17:26-32
    225 Sasmaz E,Mingle K,Lauterbach J.High-throughput screening using fourier-transform infrared imaging.Engineering,2015,1:234-242
    226 Loskyll J,Stoewe K,Maier W F.Infrared thermography as a highthroughput tool in catalysis research.ACS Comb Sci,2012,14:295-303
    227 Holzwarth A,Schmidt H W,Maier W F.Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by Ir thermography.Angew Chem Int Ed,1998,37:2644-2647
    228 Olong N,Stowe K,Maier W.HT-search for alkaline-and noblemetal-free mixed oxide catalysts for soot oxidation.Catal Today,2008,137:110-118
    229 Loskyll J,Stoewe K,Maier W F.High-throughput technology for novel SO2oxidation catalysts.Sci Tech Adv Mater,2011,12:054101
    230 Kramer M,Duisberg M,Stowe K,et al.Highly selective co methanation catalysts for the purification of hydrogen-rich gas mixtures.J Catal,2007,251:410-422
    231 Domènech-Ferrer R,Rodríguez-Viejo J,González-Silveira M,et al.In situ infrared thermographic screening of compositional spread Mg-Ti thin-film libraries.J Alloys Compd,2011,509:6497-6501
    232 Domènech-Ferrer R,Rodríguez-Viejo J,Garcia G.Infrared imaging tool for screening catalyst effect on hydrogen storing thin film libraries.Catal Today,2011,159:144-149
    233 Ding J J,Jiu H F,Bao J,et al.Combinatorial study of cofluorescence of rare earth organic complexes doped in the poly(methyl methacrylate)matrix.J Comb Chem,2005,7:69-72
    234 Luo Z L,Geng B,Bao J,et al.Parallel solution combustion synthesis for combinatorial materials studies.J Comb Chem,2005,7:942-946
    235 Chen L,Fu Y,Zhang G,et al.Optimization of Pr3+,Tb3+,and Sm3+Co-Doped(Y0.65Gd0.35)BO3:Eu0.053+VUV phosphors through combinatorial approach.J Comb Chem,2008,10:401-404
    236 Ding J,Bao J,Sun S,et al.Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type(A=Y,La,Nd,Sm,Eu,Gd,Dy,Yb,B=Al and In)binary oxides.J Comb Chem,2009,11:523-526
    237 Chen L,Chen K J,Hu S F,et al.Combinatorial chemistry approach to searching phosphors for white light-emitting diodes in(Gd-Y-BiEu)VO4quaternary system.J Mater Chem,2011,21:3677-3685
    238 Chen L,Chu C I,Chen K J,et al.An intelligent approach to the discovery of luminescent materials using a combinatorial approach combined with taguchi methodology.Luminescence,2011,26:229-238
    239 Su X,Zhang K,Liu Q,et al.Combinatorial optimization of(Lu1-xGdx)3Al5O12:Ce3yyellow phosphors as precursors for ceramic scintillators.ACS Comb Sci,2011,13:79-83
    240 Wei Q,Wan J,Liu G,et al.Combinatorial optimization of La,CeCo-doped pyrosilicate phosphors as potential scintillator materials.ACS Comb Sci,2015,17:217-223
    241 Reddington E,Sapienza A,Gurau B,et al.Combinatorial electrochemistry:A highly parallel,optical screening method for discovery of better electrocatalysts.Science,1998,280:1735-1737
    242 Jeon M K,Liu J H,Lee K R,et al.Combinatorial search for quaternary methanol tolerant oxygen electro-reduction catalyst.Fuel Cells,2010,1:NA
    243 Liu J H,Jeon M K,Woo S I.High-throughput screening of binary catalysts for oxygen electroreduction.Appl Surf Sci,2006,252:2580-2587
    244 Jin J,Prochaska M,Rochefort D,et al.A high-throughput search for direct methanol fuel cell anode electrocatalysts of type ptxbiypbz.Appl Surf Sci,2007,254:653-661
    245 Prochaska M,Jin J,Rochefort D,et al.High throughput screening of electrocatalysts for fuel cell applications.Rev Sci Instrum,2006,77:054104
    246 Tague M E,Gregoire J M,Legard A,et al.High throughput thin film Pt-M alloys for fuel electrooxidation:Low concentrations of M(M=Sn,Ta,W,Mo,Ru,Fe,In,Pd,Hf,Zn,Zr,Nb,Sc,Ni,Ti,V,Cr,Rh).JElectrochem Soc,2012,159:F880-F887
    247 Welsch F G,St?we K,Maier W F.Rapid optical screening technology for direct methanol fuel cell(dmfc)anode and related electrocatalysts.Catal Today,2011,159:108-119
    248 Welsch F G,St?we K,Maier W F.Fluorescence-based high throughput screening for noble metal-free and platinum-poor anode catalysts for the direct methanol fuel cell.ACS Comb Sci,2011,13:518-529
    249 Dogan C,St?we K,Maier W F.Optical high-throughput screening for activity and electrochemical stability of oxygen reducing electrode catalysts for fuel cell applications.ACS Comb Sci,2015,17:164-175
    250 Jeon M K,Lee C H,Park G I,et al.Combinatorial search for oxygen reduction reaction electrocatalysts:A review.J Power Sources,2012,216:400-408
    251 Urquhart A,Anderson D,Taylor M,et al.High throughput surface characterisation of a combinatorial material library.Adv Mater,2007,19:2486-2491
    252 Schafer D,Mardare C,Savan A,et al.High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction.Anal Chem,2011,83:1916-1923
    253 Priyadarshini D,Kondratyuk P,Picard Y N,et al.High-throughput characterization of surface segregation in CuxPd1-xalloys.J Phys Chem C,2011,115:10155-10163
    254 Park S H,Choi C H,Koh J K,et al.Combinatorial high-throughput screening for highly active Pd-Ir-Ce based ternary catalysts in electrochemical oxygen reduction reaction.ACS Comb Sci,2013,15:572-579
    255 Uchic M D,Dimiduk D M,Florando J N,et al.Sample dimensions influence strength and crystal plasticity.Science,2004,305:986-989
    256 Uchic M D,Dimiduk D M.A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing.Mater Sci Eng-A,2005,400-401:268-278
    257 Zarnetta R,Ehmann M,Savan A,et al.Identification of optimized Ti-Ni-Cu shape memory alloy compositions for high-frequency thin film microactuator applications.Smart Mater Struct,2010,19:065032
    258 Suram S K,Fackler S W,Zhou L,et al.Combinatorial discovery of lanthanum-tantalum oxynitride solar light absorbers with dilute nitrogen for solar fuel applications.ACS Comb Sci,2018,20:26-34
    259 Ziolkowski P,Wambach M,Ludwig A,et al.Application of highthroughput Seebeck microprobe measurements on thermoelectric Half-Heusler thin film combinatorial material libraries.ACS Comb Sci,2018,20:1-18
    260 Taylor S J,Morken J P.Thermographic selection of effective catalysts from an encoded polymer-bound library.Science,1998,280:267-270
    261 Urschey J,Weiss P A W,Scheidtmann J,et al.A low cost reactor for high-throughput activity screening of heterogeneous catalysts by mass spectrometry.Solid State Sci,2003,5:909-916
    262 Seok Oh K,Do Kyoung Kim K,Maier W F,et al.Discovery of new heterogeneous catalysts for the selective oxidation of propane to acrolein.CCHTS,2007,10:5-12
    263 Kim D,Maier W.Combinatorial discovery of new autoreduction catalysts for the CO2reforming of methane.J Catal,2006,238:142-152
    264 Cong P,Doolen R D,Fan Q,et al.High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries.Angew Chem Int Ed,1999,38:483-488
    265 Yaccato K,Carhart R,Hagemeyer A,et al.Competitive CO and CO2methanation over supported noble metal catalysts in high throughput scanning mass spectrometer.Appl Catal A-General,2005,296:30-48
    266 Claus P,H?nicke D,Zech T.Miniaturization of screening devices for the combinatorial development of heterogeneous catalysts.Catal Today,2001,67:319-339
    267 Krantz K,Ozturk S,Senkan S.Application of combinatorial catalysis to the selective reduction of no by C3H6.Catal Today,2000,62:281-289
    268 Miyazaki T,Ozturk S,Onal I,et al.Selective oxidation of propylene to propylene oxide using combinatorial methodologies.Catal Today,2003,81:473-484
    269 Zech T,Claus P,H?nicke D.Miniaturized reactors in combinatorial catalysis and high-throughput experimentation.CHIMIA Int J Chem,2002,56:611-620
    270 Zech T,Bohner G,Klein J.High-throughput screening of supported catalysts in massively parallel single-bead microreactors:Workflow aspects related to reactor bonding and catalyst preparation.Catal Today,2005,110:58-67
    271 Eckhard K,Schlüter O,Hagen V,et al.Spatially resolved mass spectrometry as a fast semi-quantitative tool for testing heterogeneous catalyst libraries under reducing stagnant-point flow conditions.Appl Catal A-General,2005,281:115-120
    272 Li N,Eckhard K,A?mann J,et al.Scanning mass spectrometry with integrated constant distance positioning.Rev Sci Instrum,2006,77:084102
    273 Li N,Assmann J,Schuhmann W,et al.Spatially resolved characterization of catalyst-coated membranes by distance-controlled scanning mass spectrometry utilizing catalytic methanol oxidation as gas-solid probe reaction.Anal Chem,2007,79:5674-5681
    274 Nayar A,Liu R,Allen R J,et al.Laser-activated membrane introduction mass spectrometry for high-throughput evaluation of bulk heterogeneous catalysts.Anal Chem,2002,74:1933-1938
    275 Roos M,Kielbassa S,Schirling C,et al.Scanning mass spectrometer for quantitative reaction studies on catalytically active microstructures.Rev Sci Instrum,2007,78:084104
    276 Roos M,Bansmann J,Zhang D,et al.Product gas evolution above planar microstructured model catalysts-A combined scanning mass spectrometry,Monte Carlo,and Computational Fluid Dynamics study.J Chem Phys,2010,133:094504
    277 Richter M.Combinatorial preparation and high-throughput catalytic tests of multi-component denox catalysts.Appl Catal B-Environ,2002,36:261-277
    278 Wang H,Liu Z,Shen J.Quantified ms analysis applied to combinatorial heterogeneous catalyst libraries.J Comb Chem,2003,5:802-808
    279 Bedenbaugh J E,Kim S,Sasmaz E,et al.High-throughput investigation of catalysts for jp-8 fuel cracking to liquefied petroleum gas.ACS Comb Sci,2013,15:491-497
    280 Wang Y,Liu Y,Song S,et al.Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach.Nat Commun,2018,9:2444
    1)www.materialsproject.org

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700