天文巡天相机冲击响应谱分析及研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of shock response spectrum and study of astronomical survey camera
  • 作者:蒋仁奎 ; 梁伟 ; 赵波
  • 英文作者:Jiang Renkui;Liang Wei;Zhao Bo;Institute of Optics and Electronics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:冲击响应谱 ; 小波合成 ; 巡天相机 ; 动力学分析 ; 有限元方法
  • 英文关键词:shock response spectrum;;wavelet synthesis;;astronomical survey camera;;kinetics analysis;;finite element method
  • 中文刊名:YYLX
  • 英文刊名:Chinese Journal of Applied Mechanics
  • 机构:中国科学院光电技术研究所;中国科学院大学;
  • 出版日期:2019-02-01 16:55
  • 出版单位:应用力学学报
  • 年:2019
  • 期:v.36;No.157
  • 基金:国家重点研发计划地球观测与导航重点专项(2016YFB0500200)
  • 语种:中文;
  • 页:YYLX201903002
  • 页数:8
  • CN:03
  • ISSN:61-1112/O3
  • 分类号:13-19+259
摘要
为了验证天文巡天相机结构能否承受火箭的发射冲击环境,并为电动振动台提供一种有效的时域波形合成方法以模拟发射冲击环境,根据冲击响应谱时域合成一般原理,采用合成小波法,将冲击响应谱转换为时域波形,并使用改进的递归数值滤波法将生成的时域波形再转换为冲击响应谱,通过对各个小波分量的幅值参数优化迭代,使最终的冲击响应谱满足试验规范,再对各个小波分量的延迟时间参数优化迭代,使时域波形的加速度峰值在电动振动台的许可范围以内。建立天文巡天相机结构有限元模型,以冲击响应谱作为输入对巡天相机进行响应谱分析,以合成的时域波形作为输入对巡天相机进行瞬态分析。响应谱分析与瞬态分析结果最大应力值分别为726MPa和757MPa,均超过了结构屈服极限,表明相机无法承受发射冲击环境,两者重合度很好,证明了合成的时域波形的有效性。
        In order to verify whether the astronomical survey camera structure can withstand the launch shock of the launch vehicle and provide an effective time-domain waveform synthesis method for the simulated shaking environment of the electric shaker, according to the general principle of time-domain synthesis of shock response spectrum, the wavelet transform method is used to transform the launch test impact response spectrum into time-domain waveforms, and the time-domain waveforms are transformed into shock response spectra using improved recursive numerical filtering method. The amplitude parameters of each wavelet component are optimized, through repeated iterations, the final shock response spectrum is obtained to meet the accuracy requirements. And the acceleration peak of the synthesized waveform is within the allowable range of the electric vibration table by optimizing the delay time of each wavelet component. Based on FEM, the response spectrum analysis and transient analysis of the surveying camera are carried out by using the shock response spectrum and the synthesized acceleration time domain waveform. The maximum stress values of response spectrum analysis and transient analysis results are 726 MPa and 757 MPa, respectively, exceeding the material yielding limit and showing that the camera can't withstand the launch shock, and the agreement is very good, proves the effectiveness of the synthesis of the time domain waveform.
引文
[1]张建华.航天产品的爆炸冲击环境技术综述[J].导弹与航天运载技术,2005,276(3):30-36.(ZHANG Jianhua.Pyroshock environment of missiles and launch vehicles[J].Missiles and space vehicles,2005,276(3):30-36(in Chinese)).
    [2]朱子宏.大型航天产品冲击响应谱试验方法探究[J].航天器环境工程,2001,68(3):49-54.(ZHU Zihong.The study of large space products shock response spectrum test methods[J].Spacecraft environment engineering,2001,68(3):49-54(in Chinese)).
    [3]骞永博.冲击响应谱试验技术研究[D].西安:西北工业大学,2007.(QIAN Yongbo.Shock response spectrum testing technical research[D].Xi’an:Northwestern Polytechnical University,2007(in Chinese)).
    [4]王浚,黄本诚,万才大.环境模拟技术[M].北京:国防工业出版社,1996.(WANG Jun,HUANG Bencheng,WAN Caida.Environmental simulation technology[M].Beijing:National Defense Industry Press,1996(in Chinese)).
    [5]赵玉刚.冲击响应谱分析方法及其应用[D].浙江:浙江大学,2004.(ZHAO Yugang.Shock response analysis method and its application[D].Zhejiang:Zhejiang University,2004(in Chinese)).
    [6]SMALLWOOD D O.Improved recursive formula for calculating shock response spectra[J].Shock and vibration bulletin,1980,51(2):211-217.
    [7]蒋仁奎.巡天相机结构动力学分析与优化[D].北京:中国科学院大学,2018.(JIANG Renkui.Dynamic analysis and optimization of astronomical survey camera[D].Beijing:University of Chinese Academy of Sciences,2018(in Chinese)).
    [8]陈小慧,闫兵,李华超.冲击响应谱时域合成算法研究[J].包装工程,2007,28(2):22-26.(CHEN Xiaohui,YAN Bing,LIHuachao.Research on the time-history waveform synthesis of shock response spectrum[J].Packaging engineering,2007,28(2):22-26(in Chinese)).
    [9]刘继承,黄光萍.冲击响应谱试验参数的设置[J].现代雷达,2010,32(2):91-93.(LIU Jicheng,HUANG Guangping.Test parameters set-up of shock response spectrum[J].Modern radar,2010,32(2):91-93(in Chinese)).
    [10]TUMA Jiri,KOCI Petr.Calculation of a shock response spectra[J].Acta montanistica slovaca,2011,16(1):404-409.
    [11]BELY P Y.The design and construction of large optical telescopes[M].New York:Springer,2002.
    [12]WEINGROD I,CHOU C Y,HOLMES B,et al.Design of bipod flexure mounts for the IRIS spectrometer[J].Optomechanical engineering,2013,8836(20):1-9.
    [13]MAMMINI P,NORDT A,HOLMES B,et al.Sensitivity evaluation of mounting optics using elastomer and bipod flexures[J].Optomechanics,2003,5176:26-35.
    [14]SCHWERTZ K,BURGE J H.Optomechanical design and analysis[M].Washington:SPIE,2012.
    [15]陈海俊,汤文成.模态叠加方法进行响应谱分析的叠加方法比较[J].电工技术与自动化,2003(4):54-57.(CHEN Haijun,TANG Wencheng.Comparison of superposition methods for response spectrum analysis[J].Machine building and automation,2003(4):54-57(in Chinese)).
    [16]杜大华,贺尔铭,薛杰,等.大推力液体火箭发动机启动冲击响应特性研究[J].西北工业大学学报,2016,34(6):982-989.(DUDahua,HE Er’ming,XUE Jie,et al.Research on start-up impact response characteristics of large thrust liquid rocket engine[J].Journal of northwestern polytechnical university,2016,34(6):982-989(in Chinese)).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700