Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation
  • 作者:Weifang ; Zhu ; Yun ; Qin ; Zhongming ; Wang ; Jianshu ; Zhang ; Ruili ; Guo ; Xueqin ; Li
  • 英文作者:Weifang Zhu;Yun Qin;Zhongming Wang;Jianshu Zhang;Ruili Guo;Xueqin Li;School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University;
  • 英文关键词:CO_2 separation;;The mixed matrix membranes;;Fe_3O_4–GO flakes;;CO_2 permeability;;Magnetic alignment
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University;
  • 出版日期:2019-04-04
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.31
  • 基金:supported by the National High Technology Research and Development Program of China (2012AA03A611);; The Program for Changjiang Scholars and Innovative Research Team in University (IRT-15R46);; Yangtze River scholar research project of Shihezi University (CJXZ201601)
  • 语种:英文;
  • 页:TRQZ201904001
  • 页数:10
  • CN:04
  • ISSN:10-1287/O6
  • 分类号:9-18
摘要
The mixed matrix membranes(MMMs) were developed by incorporating graphite oxide(GO) flakes functionalized with iron oxide(Fe_3O_4) into Pebax matrix. The Pebax/Fe_3O_4–GO MMMs were used to separate CO_2/CH_4 and CO_2/N_2 gas mixture. The results showed that the MMMs with magnetic alignment presented the better gas separation performance than that of random arrangement of Pebax/Fe_3O_4–GO mixed matrix membranes. The reason was that the Fe_3O_4–GO flakes arranged magnetically in the membrane played a multiple role in improving the performance of MMMs. Firstly, under the action of the magnetic field,the magnetic alignment of Fe_3O_4–GO flakes in Pebax matrix constructed the shorter transfer path for gas molecule, increasing the CO_2 permeability. Secondly, the hydroxyl groups in GO flakes and the presence of Fe_3O_4 have stronger binding force for water, improving the CO_2 solubility selectivity. Thirdly, the better interaction between the magnetic alignment of GO composites and polymer matrix, reduced the interface defects. Especially, the optimum gas separation performance was obtained at the Fe_3O_4–GO flakes content of 3 wt% in Pebax matrix at vertical arrangement with selectivity of 47 and 75 for CO_2/CH_4 and CO_2/N_2, respectively, and CO_2 permeability of 538 Barrer at 0.2 MPa and room temperature.
        The mixed matrix membranes(MMMs) were developed by incorporating graphite oxide(GO) flakes functionalized with iron oxide(Fe_3O_4) into Pebax matrix. The Pebax/Fe_3O_4–GO MMMs were used to separate CO_2/CH_4 and CO_2/N_2 gas mixture. The results showed that the MMMs with magnetic alignment presented the better gas separation performance than that of random arrangement of Pebax/Fe_3O_4–GO mixed matrix membranes. The reason was that the Fe_3O_4–GO flakes arranged magnetically in the membrane played a multiple role in improving the performance of MMMs. Firstly, under the action of the magnetic field,the magnetic alignment of Fe_3O_4–GO flakes in Pebax matrix constructed the shorter transfer path for gas molecule, increasing the CO_2 permeability. Secondly, the hydroxyl groups in GO flakes and the presence of Fe_3O_4 have stronger binding force for water, improving the CO_2 solubility selectivity. Thirdly, the better interaction between the magnetic alignment of GO composites and polymer matrix, reduced the interface defects. Especially, the optimum gas separation performance was obtained at the Fe_3O_4–GO flakes content of 3 wt% in Pebax matrix at vertical arrangement with selectivity of 47 and 75 for CO_2/CH_4 and CO_2/N_2, respectively, and CO_2 permeability of 538 Barrer at 0.2 MPa and room temperature.
引文
[1] N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, P. Fennell, Energy Environ. Sci. 3(2010)1645–1669.
    [2] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm,T.-H. Bae, J.R. Long, Chem. Rev. 112(2011)724–781.
    [3] H. Lin, B.D. Freeman, J. Mol. Struct. 739(2005)57–74.
    [4] H.B. Park, S.H. Han, C.H. Jung, Y.M. Lee, A.J. Hill, J. Membr. Sci. 359(2010)11–24.
    [5] W. Yave, A. Car, K.-V. Peinemann, J. Membr. Sci. 350(2010)124–129.
    [6] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci. 32(2007)483–507.
    [7] B.D. Freeman, Macromolecules 32(1999)375–380.
    [8] N. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Energy Environ. Sci. 5(2012)7306–7322.
    [9] L.M. Robeson, J. Membr. Sci. 320(2008)390–400.
    [10] L.M. Robeson, J. Membr. Sci. 62(1991)165–185.
    [11] H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin, X. Lu, J. Membr. Sci.465(2014)78–90.
    [12] Q. Xin, H. Wu, Z. Jiang, Y. Li, S. Wang, Q. Li, X. Li, X. Lu, X. Cao, J. Yang, J.Membr. Sci. 467(2014)23–35.
    [13] A. Khan, C. Klaysom, A. Gahlaut, X. Li, I.F.J. Vankelecom, J. Mater. Chem. 22(2012)20057–20064.
    [14] S. Matteucci, V.A. Kusuma, S.D. Kelman, B.D. Freeman, Polymer 49(2008)1659–1675.
    [15] Q. Xin, Y. Gao, X. Wu, C. Li, T. Liu, Y. Shi, Y. Li, Z. Jiang, H. Wu, X. Cao, J. Membr.Sci. 488(2015)13–29.
    [16] V. Nafisi, M.-B. H?gg, J. Membr. Sci. 459(2014)244–255.
    [17] X. Li, L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, B. Wang,J. Membr. Sci. 479(2015)1–10.
    [18] Y. Liu, D. Peng, G. He, S. Wang, Y. Li, H. Wu, Z. Jiang, ACS Appl. Mater. Interfaces6(2014)13051–13060.
    [19] C. Duan, X. Jie, D. Liu, Y. Cao, Q. Yuan, J. Membr. Sci. 466(2014)92–102.
    [20] A.F. Ismail, P.S. Goh, S.M. Sanip, M. Aziz, Sep. Purif. Technol. 70(2009)12–26.
    [21] X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater.Interfaces 7(2015)5528–5537.
    [22] J. Liao, Z. Wang, C. Gao, S. Li, Z. Qiao, M. Wang, S. Zhao, X. Xie, J. Wang,S. Wang, Chem. Sci. 5(2014)2843–2849.
    [23] Q. Xin, Z. Li, C. Li, S. Wang, Z. Jiang, H. Wu, Y. Zhang, J. Yang, X. Cao, J. Mater.Chem. A 3(2015)6629–6641.
    [24] H. Li, X. Ding, Y. Zhang, J. Liu, J. Membr. Sci. 543(2017)58–68.
    [25] G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, J. Liu, J. Membr. Sci. 520(2016)860–868.
    [26] Y. Shen, H. Wang, X. Zhang, Y. Zhang, ACS Appl. Mater. Interfaces 8(2016)23371–23378.
    [27] Q. Xin, T. Liu, Z. Li, S. Wang, Y. Li, Z. Li, J. Ouyang, Z. Jiang, H. Wu, J. Membr.Sci. 488(2015)67–78.
    [28] Q. Xin, J. Ouyang, T. Liu, Z. Li, Z. Li, Y. Liu, S. Wang, H. Wu, Z. Jiang, X. Cao, ACS Appl. Mater. Interfaces 7(2015)1065–1077.
    [29] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39(2010)228–240.
    [30] J. Shen, G. Liu, K. Huang, W. Jin, K.-R. Lee, N. Xu, Angew. Chem. Int. Ed. 127(2015)588–592.
    [31] X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater.Interfaces 7(2015)5528–5537.
    [32] M. Sarfraz, M. Ba-Shammakh, J. Membr. Sci. 514(2016)35–43.
    [33] A.K. Zulhairun, A.F. Ismail, J. Membr. Sci. 468(2014)20–30.
    [34] Y.S. Bhole, S.D. Wanjale, U.K. Kharul, J.P. Jog, J. Membr. Sci. 306(2007)277–286.
    [35] R. Xing, H. Wu, C. Zhao, H. Gomaa, J. Zhao, F. Pan, Z. Jiang, Chem. Eng. Technol.39(2016)969–978.
    [36] S.B. Brijmohan, M.T. Shaw, J. Membr. Sci. 303(2007)64–71.
    [37] G. Dudek, R. Turczyn, A. Strzelewicz, A. Rybak, M. Krasowska, Z.J. Grzywna,Sep. Sci. Technol. 47(2012)1390–1394.
    [38] W.S. Hummers Jr., R.E. Offeman, J., J. Am. Chem. Soc. 80(1958)1339.
    [39] S. Guo, S. Sun, J. Am. Chem. Soc. 134(2012)2492–2495.
    [40]?. Metin, S.F. Ho, C. Alp, H. Can, M.N. Mankin, M.S. Gültekin, M. Chi, S. Sun,Nano Res. 6(2013)10–18.
    [41]?. Metin,?S. Aydo?gan, K. Meral, J. Alloy. Compd. 585(2014)681–688.
    [42] L.A. El-Azzami, E.A. Grulke, J. Membr. Sci. 328(2009)15–22.
    [43] M.N. Khalid, F. Agnely, N. Yagoubi, J.L. Grossiord, G. Couarraze, Eur. J. Pharm.Sci. 15(2002)425–432.
    [44] Y. Qin, J. Lv, X. Fu, R. Guo, X. Li, J. Zhang, Z. Wei, RSC Adv. 6(2016)2252–2258.
    [45] J. Lv, Y. Liu, Y. Qin, R. Guo, J. Zhang, Z. Wei, J. Appl. Polym. Sci. 133(2016)43399.
    [46] T. Remyamol, H. John, P. Gopinath, Carbon 59(2013)308–314.
    [47] S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, J. Membr. Sci. 460(2014)62–70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700