TiO_2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H_2 production
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:TiO_2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H_2 production
  • 作者:Dong-Xue ; Yang ; Dan ; Qu ; Xiang ; Miao ; Wen-Shuai ; Jiang ; Li ; An ; Yuan-Jing ; Wen ; Dan-Dan ; Wu ; Zai-Cheng ; Sun
  • 英文作者:Dong-Xue Yang;Dan Qu;Xiang Miao;Wen-Shuai Jiang;Li An;Yuan-Jing Wen;Dan-Dan Wu;Zai-Cheng Sun;Beijing Key Laboratory for Green Catalysis and Separation,Department of Chemistry and Chemical Engineering, School of Environmental and Energy, Beijing University of Technology;
  • 英文关键词:TiO_2;;Carbon dots;;Visible light absorption;;Sensitizer;;H_2production
  • 中文刊名:XYJS
  • 英文刊名:稀有金属(英文版)
  • 机构:Beijing Key Laboratory for Green Catalysis and Separation,Department of Chemistry and Chemical Engineering, School of Environmental and Energy, Beijing University of Technology;
  • 出版日期:2019-05-15
  • 出版单位:Rare Metals
  • 年:2019
  • 期:v.38
  • 基金:financially supported by the Beijing Municipal High Level Innovative Team Building Program (No. IDHT20180504);; the National Natural Science Foundation of China (Nos. 21805004, 21671011, 21872001 and 51801006);; Beijing Natural Science Foundation (No. KZ201710005002 and 2192005);; the Natural Science Foundation of the Beijing Municipal Education Committee, China Postdoctoral Science Foundation (No. 2018M641133);; Beijing Postdoctoral Research Foundation (No. 2018-ZZ-021);; Chaoyang District Postdoctoral Research Foundation (No. 2018-ZZ-026)
  • 语种:英文;
  • 页:XYJS201905007
  • 页数:9
  • CN:05
  • ISSN:11-2112/TF
  • 分类号:48-56
摘要
Carbon dots(Cdots) with a broad light absorption range could be a potential stable sensitizer for TiO_2,which is an excellent ultraviolet(UV) response photocatalyst. Herein, we systematically investigated the different color emissive Cdots-sensitized TiO_2 for H_2 production.Firstly, all kinds of Cdots enhanced the photocatalytic properties of TiO_2. All the Cdots-sensitized TiO_2 exhibits visible light H_2 production due to their absorption in the visible light region. The photocurrent and H_2 production amount display strong dependence on the light absorption range of Cdots. The blue-emissive Cdots endow the weak H_2 production rate due to its weak absorption in the visible light. The enhanced photocatalytic activities are mainly contributed to the strong light absorbance and high-efficient charge separation. The light absorption of green-and red-emissive Cdots is another main factor for the high catalytic activities besides charge separation.
        Carbon dots(Cdots) with a broad light absorption range could be a potential stable sensitizer for TiO_2,which is an excellent ultraviolet(UV) response photocatalyst. Herein, we systematically investigated the different color emissive Cdots-sensitized TiO_2 for H_2 production.Firstly, all kinds of Cdots enhanced the photocatalytic properties of TiO_2. All the Cdots-sensitized TiO_2 exhibits visible light H_2 production due to their absorption in the visible light region. The photocurrent and H_2 production amount display strong dependence on the light absorption range of Cdots. The blue-emissive Cdots endow the weak H_2 production rate due to its weak absorption in the visible light. The enhanced photocatalytic activities are mainly contributed to the strong light absorbance and high-efficient charge separation. The light absorption of green-and red-emissive Cdots is another main factor for the high catalytic activities besides charge separation.
引文
[1] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells. Nature. 2006;443(7107):63.
    [2] Huber GW, Shabaker JW, Dumesic JA. Raney Ni–Sn catalyst for H2production from biomass-derived hydrocarbons. Science.2003;300(5628):2075.
    [3] Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S,Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem. 2016;128(23):6814.
    [4] Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2and graphene as cocatalysts for enhanced photocatalytic H2production activity of TiO2nanoparticles. J Am Chem Soc. 2012;134(15):6575.
    [5] Xiang Q, Yu J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4composites. J Phys Chem C. 2011;115(15):7355.
    [6] Jiang W, Zong X, An L, Hua S, Miao X, Luan S, Wen Y, Tao FF, Sun Z. Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction.ACS Catal. 2018;8(3):2209.
    [7] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.
    [8] Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2nanomaterials.J Am Chem Soc. 2008;130(15):5018.
    [9] Umebayashi T, Yamaki T, Tanaka S, Asai K. Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett. 2003;32(4):330.
    [10] Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL.Enhanced nitrogen doping in TiO2nanoparticles. Nano Lett.2003;3(8):1049.
    [11] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269.
    [12] Choi WY, Termin A, Hoffmann MR. The role of metal-ion dopants in quantum-sized TiO2—correlation between photoreactivity and charge-carrier recombination dynamics. J Phys Chem. 1994;98(51):13669.
    [13] Borgarello E. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc. 1982;104(11):2996.
    [14] Liu M, Piao L, Wang W. Hierarchical TiO2spheres:facile fabrication and enhanced photocatalysis. Rare Met. 2011;30(1):153.
    [15] O’Regan B, Gra¨tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature. 1991;353(6343):737.
    [16] Hensel J, Wang G, Li Y, Zhang JZ. Synergistic effect of Cd Se quantum dot sensitization and nitrogen doping of TiO2nanostructures for photoelectrochemical solar hydrogen generation.Nano Lett. 2010;10(2):478.
    [17] He K, Zhu K, Chen W. Photocatalytic behavior of PdCl2-modified nanostructured AgI/TiO2photocatalyst. Rare Met. 2011;30(S1):131.
    [18] Chen W-T, Hsu Y-J, Kamat PV. Realizing visible photoactivity of metal nanoparticles:excited-state behavior and electron-transfer properties of silver(Ag8)clusters. J Phys Chem Lett. 2012;3(17):2493.
    [19] Su R, Tiruvalam R, He Q, Dimitratos N, Kesavan L, Hammond C, Lopez-Sanchez JA, Bechstein R, Kiely CJ, Hutchings GJ,Besenbacher F. Promotion of phenol photodecomposition over TiO2using Au, Pd, and Au–Pd nanoparticles. ACS Nano. 2012;6(7):6284.
    [20] Luan S, Qu D, An L, Jiang W, Gao X, Hua S, Miao X, Wen Y,Sun Z. Enhancing photocatalytic performance by constructing ultrafine TiO2nanorods/g-C3N4nanosheets heterojunction for water treatment. Sci Bull. 2018;63(11):683.
    [21] Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M,Sreedhar B, Hebalkar NY. Highly stabilized and finely dispersed Cu2O/TiO2:a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol:water mixtures. J Phys Chem C. 2010;114(50):22181.
    [22] Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self--doped Ti3?enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc. 2010;132(34):11856.
    [23] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC,Wang C, Zhang JZ, Li Y. Hydrogen-treated TiO2nanowire arrays for photoelectrochemical water splitting. Nano Lett.2011;11(7):3026.
    [24] Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z,Xie Z, Sun Z. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale. 2013;5(24):12272.
    [25] Yeh TF, Teng CY, Chen SJ, Teng H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater. 2014;26(20):3297.
    [26] Ma Z, Ming H, Huang H, Liu Y, Kang Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem.2012;36(4):861.
    [27] Hu S, Trinchi A, Atkin P, Cole I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem Int Ed. 2015;54(10):2970.
    [28] Zhang H, Huang H, Ming H, Li H, Zhang L, Liu Y, Kang Z.Carbon quantum dots/Ag3PO4complex photocatalysts with enhanced photocatalytic activity and stability under visible light.J Mater Chem. 2012;22(21):10501.
    [29] Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots:properties, syntheses,and biological applications. Small. 2015;11(14):162.
    [30] Wang C, Xu Z, Cheng H, Lin H, Humphrey MG, Zhang C. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon. 2015;82:87.
    [31] Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed.2010;49(26):4430.
    [32] Liu Y, Zhou L, Li Y, Deng R, Zhang H. Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale. 2017;9(2):491.
    [33] Miao X, Qu D, Yang D, Nie B, Zhao Y, Fan H, Sun Z. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater. 2018;30(1):1704740.
    [34] Yu X, Liu J, Yu Y, Zuo S, Li B. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2nanosheet composites. Carbon. 2014;68:718.
    [35] Martins NCT, A?ngelo J, Gira?o AV, Trindade T, Andrade L,Mendes A. N-doped carbon quantum dots/TiO2composite with improved photocatalytic activity. Appl Catal B Environ. 2016;193:67.
    [36] Yang X, Huang H, Kubota M, He Z, Kobayashi N, Zhou X, Jin B, Luo J. Synergetic effect of MoS2and g-C3N4as cocatalysts for enhanced photocatalytic H2production activity of TiO2.Mater Res Bull. 2016;76:79.
    [37] Noh M, Kim T, Lee H, Kim CK, Joo SW, Lee K. Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids Surf A Physicochem Eng Asp. 2010;359(1):39.
    [38] Zhang YQ, Ma DK, Zhang YG, Chen W, Huang SM. N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy. 2013;2(5):545.
    [39] Pan D, Jiao J, Li Z, Guo Y, Feng C, Liu Y, Wang L, Wu M.Efficient separation of electron–hole pairs in graphene quantum dots by TiO2heterojunctions for dye degradation. ACS Sustain Chem Eng. 2015;3(10):2405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700