Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
  • 作者:苏玉龙 ; 冯欢 ; 胡辉 ; 汪伟 ; 段弢 ; 王屹山 ; 司金海 ; 谢小平 ; 杨合宁 ; 黄新宁
  • 英文作者:Yu-Long Su;Huan Feng;Hui Hu;Wei Wang;Tao Duan;Yi-Shan Wang;Jin-Hai Si;Xiao-Ping Xie;He-Ning Yang;Xin-Ning Huang;State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences;Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique,School of Electronic and Information Engineering, Xi'an Jiaotong University;University of Chinese Academy of Sciences;
  • 英文关键词:polarization separation and switching;;four-wave mixing;;orthogonal polarization;;100-Gbps dual polarization-quadrature phase shift keying
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences;Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique,School of Electronic and Information Engineering, Xi'an Jiaotong University;University of Chinese Academy of Sciences;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0803900);; the National Natural Science Foundation of China(Grant No.9163801)
  • 语种:英文;
  • 页:ZGWL201902040
  • 页数:7
  • CN:02
  • ISSN:11-5639/O4
  • 分类号:299-305
摘要
We propose a novel scheme of simultaneous polarization separation and switching, based on the orthogonallypolarized four-wave mixing(FWM) effect, for ultra-high-speed polarization multiplexing(Pol-MUX) fiber networks such as 100-Gbps and 400-Gbps backbone networks. We use theoretical and experimental analysis of the vector theory of FWM to successfully achieve polarization separation and all-optical switching by utilizing a 100-Gbps dual polarizationquadrature phase shift keying(DP-QPSK) signal and two orthogonally-polarized pumps. Both of the polarization-separated QPSK signals have clear constellation diagrams, with root mean square(RMS) error vector magnitudes(EVMs) of 14.32%and 14.11% respectively. The wavelengths of idlers can be created at 30 different wavelengths, which are consistent with International Telecommunication Union-Telecommunication(ITU-T) wavelengths, by flexibly changing the wavelength of the pump light. Moreover, the idlers that have distinct wavelengths have power distributed in a range from-10 dBm to-15 dBm, which can support error-free transmission. The power penaltyis 5 d B lower than that of back-to-back(BTB)signal for both the X-and Y-polarization components measured at a bit error ratio(BER) of 3.8×10~(-3). Our experimental results indicate that this scheme has promising applications in future backbone networks.
        We propose a novel scheme of simultaneous polarization separation and switching, based on the orthogonallypolarized four-wave mixing(FWM) effect, for ultra-high-speed polarization multiplexing(Pol-MUX) fiber networks such as 100-Gbps and 400-Gbps backbone networks. We use theoretical and experimental analysis of the vector theory of FWM to successfully achieve polarization separation and all-optical switching by utilizing a 100-Gbps dual polarizationquadrature phase shift keying(DP-QPSK) signal and two orthogonally-polarized pumps. Both of the polarization-separated QPSK signals have clear constellation diagrams, with root mean square(RMS) error vector magnitudes(EVMs) of 14.32%and 14.11% respectively. The wavelengths of idlers can be created at 30 different wavelengths, which are consistent with International Telecommunication Union-Telecommunication(ITU-T) wavelengths, by flexibly changing the wavelength of the pump light. Moreover, the idlers that have distinct wavelengths have power distributed in a range from-10 dBm to-15 dBm, which can support error-free transmission. The power penaltyis 5 d B lower than that of back-to-back(BTB)signal for both the X-and Y-polarization components measured at a bit error ratio(BER) of 3.8×10~(-3). Our experimental results indicate that this scheme has promising applications in future backbone networks.
引文
[1]Winzer P and Essiambre R J 2006 J.Lightwave Technol.24 4711
    [2]Pfeiffer T 2015 J.Opt.Commun.7 B38
    [3]Lam C F,Liu H,Koley B,Zhao X X,V K and V G 2010 IEEE Commun.Mag.48 32
    [4]Tan M,Rosa P,Le S T,Phillips L D and Harper P 2015 Opt.Express23 22181
    [5]Khanna G,Rahman T,Man E D and Riccardi E 2016 IEEE Photon.Technol.Lett.29 189
    [6]Xu T,Shevchenko N,Lavery D,Semrau D,Liga G,Alvarado A,Killey R and Bayvel P 2017 Opt.Express 25 3311
    [7]Zhang Z Y,Jiang W R,Wang B,Yang Y Q and Wang Z G 2018 Chin.Phys.B 27 013102
    [8]Pan Y,Yan L S,Yi A L,Ji.L,Pan W,Luo B and Zou X H 2017 Opt.Lett.42 4071
    [9]Chen Z Y,Yan L S,Pan Y,Jiang L,Yi A L,Pan W and Luo B 2017Light:Science&Applications 6 e16207
    [10]Ji H C,Lee J H,Kim H,Park P J and Chung Y C 2009 Opt.Express 171169
    [11]Steve X,Yan L S,Zhang B,Willner A E and Jiang J F 2007 Opt.Express 15 7407
    [12]Koch B,Noe R,Sandel D,Mirvoda V and Omar J 2013 IEEE Photon.Technol.Lett.25 798
    [13]Xu F,Guo M Q,Wang L Qiao Y J and Tian H P 2016 Chin.Phys.B 25084208
    [14]Tian F,Zhang X G,Weng X,Xi L X,Zhang Y A and Zhang W B 2011Chin.Phys.B 20 080702
    [15]Gerstel O,Jinno M,Lord A and Ben S J 2012 IEEE Commun.Mag.50s12
    [16]Kachris C and Tomkos L 2012 IEEE Commun.Surveys&Tutorials 141021
    [17]Kameda Y,Hashimoto Y and Yorozu S 2008 IEICE Trans.Electron E91-C 333
    [18]Hoang T M,Osman M M,Chagnon M,Qiu M and Patel D 2015 Opt.Commun.356 269
    [19]Cuik S,Xia W J,Shang J,Ke C J,Fu S N and Liu D M 2016 Opt.Commun.366 200
    [20]Papadimitriou G,Papazoglou C and Pomportsis A S 2003 J.Lightwave Technol.21 384
    [21]Wang Y and Cao X J 2011 IEEE Communications Surveys&Tutorials.14 698
    [22]Wen Y H and Feng K M 2015 IEEE Photon.Technol.Lett.27 935
    [23]Anthur A P,Zhou R,Duill S O,Walsh A J,Martin E,Venkitesh D and Barry L P 2016 Opt.Express 24 11749
    [24]Lin Q and Agrawal G P 2004 Opt.Lett.29 1114
    [25]Ma J X,Yu J J,Yu C X and Zhou Z 2006 Opt.Commun.260 522
    [26]Uzunidis D,Matrakidis C and Stavdas A 2016 Opt.Commun.378 22
    [27]Mateo E,Zhu L K and Li G F 2008 Opt.Express 16 16124
    [28]Radic S,Mckinstrie C J,Jopson R M,Centanni J C and Chraplyvy AR 2003 IEEE Photon.Technol.Lett.15 957
    [29]Cui Y D,Lu F F and Liu X M 2017 Sci.Rep.7 40080
    [30]Wang T,Niu M S,Bu M M,Han P G,Hao D Z,Yang J S and Song LK 2018 Acta Phys.Sin.67 100701(in Chinese)
    [31]Li P,Wu D J,Liu S,Zhang Y,Guo X Y,Qi S X,Li Y and Zhao J L2017 Chin.Phys.B 26 114201
    [32]Wang Z N and Xie C J 2009 Opt.Express 17 3183
    [33]Koch B,Noe R,Mirvoda V,Griesser H,Bayer S and Wernz H 2010IEEE Photon.Technol.Lett.22 1407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700