基于Py-GC/MS的污泥含碳、氧官能团热解演化过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on pyrolysis mechanism of carbon and oxygen-containing functional groups in sludge by Py-GC/MS
  • 作者:卢艳军 ; 胡艳军 ; 余帆 ; 于文静
  • 英文作者:LU Yanjun;HU Yanjun;YU Fan;YU Wenjing;Institute of Energy and Power Engineering,Zhejiang University of Technology;
  • 关键词:污泥 ; 热解 ; 含碳官能团 ; 含氧官能团 ; Py-GC/MS ; 反应路径
  • 英文关键词:sewage sludge;;pyrolysis;;carbon-containing functional;;oxygen-containing functional;;Py-GC/MS;;reaction pathways
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:浙江工业大学能源与动力工程研究所;
  • 出版日期:2018-07-23 18:30
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(51576178);; 浙江省科技厅公益型项目(LGG18E060006)~~
  • 语种:中文;
  • 页:HGSZ201810029
  • 页数:8
  • CN:10
  • ISSN:11-1946/TQ
  • 分类号:248-255
摘要
基于裂解-气相色谱/质谱联用技术(Py-GC/MS),分析了污泥中主要含碳和含氧官能团在不同温度条件下的热解演变规律和热化学转化路径。结果表明,污泥中主要含碳和含氧官能团为碳碳双键(C C)、羧基(COOH)、羟基(—OH)、醛基(—CHO)和苯环(π-π*)。温度对官能团裂解演变的影响较大,低温热解阶段(<350℃),温度升高导致产物中—COOH含量降幅最大,约降低33%;中温热解阶段(350~550℃),产物中C=C、—OH、—CHO和π-π*生成量显著增加,而—COOH呈下降趋势,但其所占质量比仍最高;在高温热解阶段(>550℃),由于脂肪烃分子化学活性增强,主要发生以脱水、脱羧、脱羰和羟醛缩合等为主的芳香化缩聚反应,同时由于污泥中的蛋白质、纤维素等大分子热解使得π-π*成为产物中主要官能团。根据各个官能团热解演变规律,提出了污泥含碳、含氧官能团热解演变反应路径。
        Pyrolysis-gas-chromatography/mass spectrometry(Py-GC/MS) was employed to investigate the thermal cracking evolution and thermochemical conversion pathways of the main carbon and oxygen-containing functional groups contained in sewage sludge under different pyrolysis temperatures. The results show that sewage sludge mainly contain carbon-carbon double bonds(C C), carboxyl groups(—COOH), hydroxyl groups(—OH), aldehyde groups(—CHO) and benzene(π-π*). Pyrolysis temperature has an evident influence on the functional groups evolution. At the stage of the pyrolysis with a temperature lower than 350℃, the increased temperature results in the largest decrease of —COOH content, which is approximately 33%. In the mid-temperature thermal cracking stage(350—550℃), the production of C=C, —OH, —CHO, and π-π* in pyrolysis product increased significantly, while —COOH show a decreasing trend, but its mass ratio is still the highest. The benzene becomes the main functional groups when the pyrolysis temperature higher than 550℃. In the high temperature pyrolysis stage(>550℃), due to aliphatic hydrocarbon molecules. The chemical activity is enhanced, mainly due to aromatization polycondensation reaction such as dehydration, decarboxylation, decarbonylation and aldol condensation. In the range of pyrolysis temperature study, carbon-carbon double bonds, aldehyde groups and hydroxyl groups content are lower, but show obvious pyrolysis rules. Further, combining the pyrolysis rules of each functional group, the possible path of the pyrolysis evolution of carbon and oxygen-containing functional groups in sludge is proposed.
引文
[1]ZHANG J,ZUO W,TIAN Y,et al.Sulfur transformation during microwave and conventional pyrolysis of sewage sludge[J].Environmental Science&Technology,2017,51(1):709-717.
    [2]SHEN L,ZHANG D K.A experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed[J].Fuel,2003,82(4):465-472.
    [3]ZHOU P,XIONG S,ZHANG Y,et al.Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by PyGC/MS and Py-FTIR[J].International Journal of Hydrogen Energy,2017,42(29):18181-18188.
    [4]TSAI W T,LEE M K,CHANG J H,et al.Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis[J].Bioresource Technology,2009,100(9):2650-2654.
    [5]WEI F,CAO J P,ZHAO X Y,et al.Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge:a study of sewage sludge and model amino acids[J].Fuel,2018,218:148-154.
    [6]BENGOA C,FABREGAT A,FONT J,et al.Reduction,Modification and Valorisation of Sludge(REMOVALS)[M].London:IWAPublishing,2011:151-157.
    [7]CHANNIWALA S A,PARIKH P P.A unified correlation for estimating HHV of solid,liquid and gaseous fuels[J].Fuel,2002,81(8):1051-1063.
    [8]TIAN Y,ZHANG J,ZUO W,et al.Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J].Environmental Science&Technology,2013,47(7):3498-3505.
    [9]ZHANG J,ZUO W,TIAN Y,et al.Release of hydrogen sulfide during microwave pyrolysis of sewage sludge:effect of operating parameters and mechanism[J].Journal of Hazardous Materials,2017,331:117-122.
    [10]煤的工业分析方法:GB/T 212-2008[S].Proximate analysis of coal:GB/T 212-2008[S].
    [11]PANEK P,KOSTURA B,CEPELAKOVA I,et al.Pyrolysis of oil sludge with calcium-containing additive[J].Journal of Analytical&Applied Pyrolysis,2014,108:274-283.
    [12]THIPKHUNTHOD P,MEEYYOO V,RANGSUNVIGIT P,et al.Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition.[J].Journal of Analytical&Applied Pyrolysis,2007,79(1/2):78-85.
    [13]BIAGINI E,BARONTINI F,TOGNOTTI L.Devolatilization of biomass fuels and biomass components studied by TG/FTIRtechnique[J].Industrial&Engineering Chemistry Research,2006,45(13):4486-4493.
    [14]GRUBE M,LIN J G,LEE P H,et al.Evaluation of sewage sludgebased compost by FT-IR spectroscopy[J].Geoderma,2006,130(3/4):324-333.
    [15]ZHANG B,XIONG S,XIAO B,et al.Mechanism of wet sewage sludge pyrolysis in a tubular furnace[J].International Journal of Hydrogen Energy,2011,36(1):355-363.
    [16]LIU X Q,DING H S,WANG Y Y,et al.Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-naphthol[J].Environmental Science&Technology,2016,50(5):2602-2609.
    [17]XU L,JIANG Y,QIU R.Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variancebased decomposition[J].Bioresource Technology,2017,247:545-552.
    [18]LI J F,YAN R,XIAO B,et al.Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor[J].Energy&Fuels,2007,21:2398-2407.
    [19]CHAN W P,WANG J Y.Characterisation of sludge for pyrolysis conversion process based on biomass composition analysis and simulation of pyrolytic properties.[J].Waste Manag.,2018,72:274-286.
    [20]MULLEN C A,BOATENG A A.Catalytic pyrolysis-GC/MS of lignin from several sources[J].Fuel Processing Technology,2010,91(11):1446-1458.
    [21]KIM Y M,HAN T U,LEE B,et al.Analytical pyrolysis reaction characteristics of Porphyra tenera[J].Algal Research,2018,32:60-69.
    [22]JIANG W K,CHU J Y,WU S B,et al.Modeling pyrolytic behavior of pre-oxidized lignin using four representativeβ-ether-type lignin-like model polymers[J].Fuel Processing Technology,2018,176:221-229.
    [23]MALIUTINA K,TAHMASEBI A,YU J L,et al.Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor[J].Energy Conversion&Management,2017,151:426-438.
    [24]DEBONO O,VILLOT A.Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes[J].Journal of Analytical&Applied Pyrolysis,2015,114:222-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700