The significance of U-Pb zircon ages in zoned plutons:the case of the Flamenco pluton, Coastal Range batholith, northern Chile
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The significance of U-Pb zircon ages in zoned plutons:the case of the Flamenco pluton, Coastal Range batholith, northern Chile
  • 作者:Natalia ; Rodríguez ; Juan ; Díaz-Alvarado ; Carlos ; Fernández ; Paulina ; Fuentes ; Christoph ; Breitkreuz ; Colombo ; Celso ; Gaeta ; Tassinari
  • 英文作者:Natalia Rodríguez;Juan Díaz-Alvarado;Carlos Fernández;Paulina Fuentes;Christoph Breitkreuz;Colombo Celso Gaeta Tassinari;Departamento de Geología, Universidad de Atacama;Departamento de Ciencias de la Tierra, Universidad de Huelva;Institut für Geologie, TU Bergakademie Freiberg;High Resolution Geochronological Laboratory University of S?o Paulo;
  • 英文关键词:Zircon U-Pb geochronology;;Zoned plutons;;Andean magmatic arc;;Sequential emplacement;;Individual and statistical zircon ages
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:Departamento de Geología, Universidad de Atacama;Departamento de Ciencias de la Tierra, Universidad de Huelva;Institut für Geologie, TU Bergakademie Freiberg;High Resolution Geochronological Laboratory University of S?o Paulo;
  • 出版日期:2019-05-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 基金:funded with FONDECYT Project No. 11140722 of CONICYT;; the fund support of DIUDA 2013-22268 and DIUDA 201422273 projects
  • 语种:英文;
  • 页:GSFT201903020
  • 页数:27
  • CN:03
  • ISSN:11-5920/P
  • 分类号:277-303
摘要
Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geochemical differentiation and the magma replenishment rates are revealed by geochemistry and field relations, together with the increasingly accurate U-Pb geochronology, which has promoted the knowledge about the pluton incremental assembly theories.The Flamenco pluton, located in the Coastal Range of northern Chile, is part of the Upper Triassic to Early Cretaceous Andean intrusives formed in the western active margin of South America, and present a normal zoned structure with mafic magmatic facies(mostly gabbros and Qtz-diorites) close to the contacts with the host metasediments, and tonalites, granodiorites and granites in the inner areas. A combined study of the field relations, geochemistry and zircon geochronology of the magmatic facies was applied to determine the emplacement sequence of the Flamenco pluton, revealing three distinguishable domains separated by metasedimentary septa. The SW area is constituted by mostly homogeneous leucocratic granodiorites that yielded an age of 213 Ma as the best estimation for their emplacement age. Distinctive geochemical characteristics, such as the absence of an Eu anomaly, the depletion in HREE, or the highest Sr, Sr/Y and Ce/Yb values among the granodioritic facies of the pluton,involve lower T and/or higher P conditions at the magmatic source according to experimental studies.These conditions were established during an early stage of the Andean magmatic arc building that is firstly defined here as Upper Triassic. The NW and E domains of the pluton were sequentially emplaced between 194 Ma and 186 Ma and both the field relations and the detailed geochronological results suggest that the mafic facies intruded latter in the emplacement sequence. To the NW, Qtz-dioritic and gabbroic externally emplaced pulses gave a younger crystallization age of 186.3 ± 1.8 Ma, and promoted the granoblastic textures and metamorphic zircon overgrowths that characterize the granodiorites located in the contact with the intermediate and felsic inner magmas, which yielded a best estimation of their emplacement age of 192 士 1.5 Ma. On the other hand, in the eastern domain, magma-magma relations are observed between gabbros and previously intruded tonalites and granodiorites. Both the mafic and intermediate facies show two main subgroups of ages that yielded 194.7 土 1.5 Ma to188.3 ± 2.1 Ma and 193.1 ± 2.2 Ma to 185.5 ± 1.4 Ma respectively. These differences are related to the variations in the magmatic addition rates, which may extend the super-solidus conditions in the eastern domain of the magmatic reservoir as is confirmed by the wider age ranges yielded by these magmatic facies. Zircon overgrowths in the host rocks yield similar ages(around 220 Ma and 205 Ma) than the oldest results obtained in the intrusive facies, indicating that metamorphism correlates with the initial stages of plutonic emplacement.Geochronological results differ between 9 Myr and 41 Myr in the eight studied samples for noninherited ages and gave very close mean ages(within analytical uncertainty) for all the intrusive units. However, we examine other characteristics such as zircon morphology, internal structure,geochemistry and statistical data to assess if the scattering of the geochronological data may be related to the different processes involved in the construction of the Flamenco pluton. We concluded that this detailed study of U-Pb zircon ages, including individual and significative groups of analyses, is useful to determine accurately the emplacement sequence and the genetic relation between the intrusive units,together with the evidences depicted by the geochemistry and field relations.
        Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geochemical differentiation and the magma replenishment rates are revealed by geochemistry and field relations, together with the increasingly accurate U-Pb geochronology, which has promoted the knowledge about the pluton incremental assembly theories.The Flamenco pluton, located in the Coastal Range of northern Chile, is part of the Upper Triassic to Early Cretaceous Andean intrusives formed in the western active margin of South America, and present a normal zoned structure with mafic magmatic facies(mostly gabbros and Qtz-diorites) close to the contacts with the host metasediments, and tonalites, granodiorites and granites in the inner areas. A combined study of the field relations, geochemistry and zircon geochronology of the magmatic facies was applied to determine the emplacement sequence of the Flamenco pluton, revealing three distinguishable domains separated by metasedimentary septa. The SW area is constituted by mostly homogeneous leucocratic granodiorites that yielded an age of 213 Ma as the best estimation for their emplacement age. Distinctive geochemical characteristics, such as the absence of an Eu anomaly, the depletion in HREE, or the highest Sr, Sr/Y and Ce/Yb values among the granodioritic facies of the pluton,involve lower T and/or higher P conditions at the magmatic source according to experimental studies.These conditions were established during an early stage of the Andean magmatic arc building that is firstly defined here as Upper Triassic. The NW and E domains of the pluton were sequentially emplaced between 194 Ma and 186 Ma and both the field relations and the detailed geochronological results suggest that the mafic facies intruded latter in the emplacement sequence. To the NW, Qtz-dioritic and gabbroic externally emplaced pulses gave a younger crystallization age of 186.3 ± 1.8 Ma, and promoted the granoblastic textures and metamorphic zircon overgrowths that characterize the granodiorites located in the contact with the intermediate and felsic inner magmas, which yielded a best estimation of their emplacement age of 192 士 1.5 Ma. On the other hand, in the eastern domain, magma-magma relations are observed between gabbros and previously intruded tonalites and granodiorites. Both the mafic and intermediate facies show two main subgroups of ages that yielded 194.7 土 1.5 Ma to188.3 ± 2.1 Ma and 193.1 ± 2.2 Ma to 185.5 ± 1.4 Ma respectively. These differences are related to the variations in the magmatic addition rates, which may extend the super-solidus conditions in the eastern domain of the magmatic reservoir as is confirmed by the wider age ranges yielded by these magmatic facies. Zircon overgrowths in the host rocks yield similar ages(around 220 Ma and 205 Ma) than the oldest results obtained in the intrusive facies, indicating that metamorphism correlates with the initial stages of plutonic emplacement.Geochronological results differ between 9 Myr and 41 Myr in the eight studied samples for noninherited ages and gave very close mean ages(within analytical uncertainty) for all the intrusive units. However, we examine other characteristics such as zircon morphology, internal structure,geochemistry and statistical data to assess if the scattering of the geochronological data may be related to the different processes involved in the construction of the Flamenco pluton. We concluded that this detailed study of U-Pb zircon ages, including individual and significative groups of analyses, is useful to determine accurately the emplacement sequence and the genetic relation between the intrusive units,together with the evidences depicted by the geochemistry and field relations.
引文
Alonso Perez, R., Müntener, 0., Ulmer, P., 2009. Igneous garnet and amphibolite fractionation in the roots of island arcs:experimental constraints on andesite liquids. Contributions to Mineralogy and Petrology 157, 541-558.
    Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47, 505-539.
    Arabasz, W.J., 1971. Geological and Geophysical Studies of the Atacama Fault Zone in Northern Chile. PhD thesis. Californian Institute of Technology, Pasadena.
    Arag6n, E., Castro, A., Díaz-Alvarado, J., Pinotti, L, D'eramo, F., Demartis, M.,Coniglio, J., Hernando, I., Rodriguez, C., 2018. Mantle derived crystal-poor rhyolitic ignimbrites:eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera, Southern Argentina. Geoscience Frontiers 9(5), 1529-1553. https://doi.org/10.1016/j.gsf.2017.09.004.
    Arevalo, C., Welkner, D., 2008. Geología del area Carrizal Bajo-Chacritas, Región de Atacama. In:Servicio Nacional de Geologia y Minería, Carta Geológica de Chile,Serie Geologia Básica, vol. 111, p. 67.1 mapa 1:100.000.
    Bachmann, 0., Dungan, M.A., Lipman, P.W., 2002. The Fish Canyon magma body, San Juan volcanic field, Colorado; rejuvenation and eruption of an upper-crustal batholith. Journal of Petrology 43,1469-1503.
    Bachmann, 0., Bergantz, G.W., 2004. On the origin of crystal-poor rhyolites:extracted from batholithic crystal mushes. Journal of Petrology 45.1565-1582.
    Bachmann, 0., Bergantz, G.W., 2008. The magma reservoirs that feed super-eruptions. Elements 4,19-23.
    Bachmann, O., Huber, C., 2016. Silicic magma reservoirs in the Earth's crust.American Mineralogist 101, 2377-2404.
    Bea, F., Montero, P., 2013. Diffusion-induced disturbances of the U-Pb isotope system in pre-magmatic zircon and their influence on SIMS dating. A numerical study. Chemical Geology 349-350,1-17.
    Bell, C.M., 1982, The lower paleozoic metasedimentary basament of the coastal ranges of Chile between 25°30'and 27°S. Revista Geologica de Chile 17, 21-29.
    Bell, C.M., 1987. The origin of the upper Palaeozoic Chanaral melange of N Chile.Journal of the Geological Society London 144, 599-610.
    Berg, K., Breitkreuz, C., 1983. Mesozoische Plutone in der nordchilenischen Kiistenkordillere:Petrogenese, Geochronologie, Geochemie und Geodynamik mentelbetonter Magmatite. Geotektonische Forschungen 66,107.
    Black, LP,.Jagodzinski, E.A., 2003. Importance of establishing sources of uncertainty for the derivation of reliable SHRIMP ages. Australian Journal of Earth Sciences50, 503-512.
    Bouchez, J.L, 1997. Granite is never isotropic:an introduction to AMS studies of granitc rocks. In:Bouchez, J.L, Hutton, D.H.W., Stephens, W.E.(Eds.), Granite:From Segregation of Melt to Emplacement Fabrics. Kluwer, Dordrecht,pp.95-112.
    Brown, M., Diaz, F., Grocott. J., 1993. Displacement history and tectonic significance of the El Salado segment of the Atacama Fault System, Northern Chile. GSA Bulletin 105,1165-1174.
    Burgisser, A., Bergantz, C.W., 2011. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212-215.
    Cao, W., Paterson, S., Saleeby, J., Zalunardo, S., 2016. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc. Journal of Structural Geology 84.14-30.
    Castro, A., 2013. Tonalite-granodiorite suites as cotectic systems:a review of experimental studies with application to granitoid petrogenesis. Earth-science Reviews 124, 68-95.
    Castro, A., Gerya, T.V., 2008. Magmatic implications of mantle wedge plumes:Experimental study. Lithos 103,138-148.
    Castro, A., Gerya, T., García-Casco, A., Fernandez, C., DiazAlvarado, J., MorenoVentas, I., Loew, I., 2010. Melting relations of MORB-sediment melanges in underplated mantle wedge plumes. Implications for the origin of cordillerantype batholiths. Journal of Petrology 51,1267-1295.
    Castro, A., Moreno-Ventas, I., Fernandez, C, Vujovich, G., Gallastegui, G., Heredia, N.,Martino, R.D., Becchio, R., Corretge, L.G., Diaz-Alvarado, J., Garcfa-Arias, M.,Liu, D.-Y., 2011. Petrology and SHRIMP U-Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina. Journal of South American Earth Sciences 32, 508-530.
    Castro, A., Diaz-Alvarado, J., Fernandez, C., 2014. Fractionation and incipient selfgranulitization during deep-crust emplacement of Lower Ordovician Valle Fertil batholith at the Gondwana active margin of South America. Gondwana Research 25, 685-706.
    Chamberlain, K.J., Wilson, C.J.N., Wooden, J.L., Charlier, B.L.A., Ireland, T.R., 2014.New perspectives on the Bishop tuff from zircon textures, ages and trace elements. Journal of Petrology 55, 395-426.
    Chapman, J.B., Ducea, M.N., Profeta, L, DeCelles, P.G., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y; an example from the Western U.S. Cordillera. Geology 43, 919-923.
    Charlier, B.LA., Wilson, C.J.N., Lowenstern, J.B., Blake, S., van Calsteren, P.W.,Davidson, J.P., 2005. Magma generation at a large, hyperactive silicic volcano(Taupo, New Zealand)revealed by U-Th and U-Pb systematics in zircons.Journal of Petrology 46, 3-32.
    Charrier, R., Pinto, L., Rodriguez, M.P., 2007. Tectonostratigraphic evolution of the Andean orogen in Chile. In:Moreno, T., Gibbons, W.(Eds.), The Geology of Chile,the Geological Society, Londres, pp. 21-114.
    Chen, L, Zhao, Z., 2017. Origin of continental arc andesites:The composition of source rocks is the key. Journal of Asian Earth Sciences 145, 217-232.
    Cherniak, D.J., 2010. Diffusion in accessory minerals:zircon, titanite, apatite, monazite and xenotime. Reviews in Mineralogy and Geochemistry 72, 827-869.
    Chiaradia, M., 2015. Crustal thickness control on Sr/Y signatures of recent arc magmas:an Earth scale perspective. Scientific Reports 5, 8115. https://doi.org/10.1038/srep08115.
    Clemens, J.D., Stevens, G., Farina, F., 2011. The enigmatic sources of I-type granites:the peritectic connexion. Lithos 126(3-4), 174-181.
    Clemens, J.D., Stevens, G., 2012. What controls chemical variation in granitic magmas? Lithos 134-135, 317-329.
    Coleman, D.S., Gray, W., Glazner, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons:geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433-436.
    Coloma, F., Valin, X., Oliveros, V., Vásquez, P., Creixell, C., Salazar, E., Ducea, M.N.,2017. Geochemistry of Permian to Triassic igneous rocks from northern Chile(28°-30°15′S):Implications on the dynamics of the proto-Andean margin. Andean Geology 44(2), 147-178.
    Compston, W., 2001. Effect of Pb loss on the ages of reference zircons QGNG and SL13, and of volcanic zircons from the Early Devonian Merrions and Turondale Formations, New South Wales. Australian Journal of Earth Sciences 48,797-803.
    Cooper, K.M., Kent, A.J.R., 2014. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480-483.
    Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. In:Hanchar, J.M., Hoskin, P.W.O.(Eds.), Zircon. Reviews in Mineralogy and Geochemistry, vol. 53. Mineralogical Society of America, Washington DC,pp. 27-62.
    Creixell, C., Ortiz, M., Arevalo, C., 2012. Geologia del area Carrizalillo-El Tofo, Regiones de Atacama y Coquimbo. In:Servicio Nacional de Geologia y Mineria, Carta Geológica de Chile, Serie Geologia Basica, 133-134, p. 82.1 mapa 1:100.000.
    Cummings, G.L, Richards, J.R., 1975. Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters 28.155-171.
    Dallmeyer, R.D., Brown, M., Grocott, J., Taylor, G.K., Treloar, P.J., 1996. Mesozoic magmatic and tectonics events within the Andean Plate boundary zone, 26°-27°30′S, North Chile:constraints from~(40)Ar/~(39)Ar Mineral ages. The Journal of Geology 104(1), 19-40.
    De la Roche, H., Leterrier, J., Grandclaude, P., Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major element analyses.Its relationships with current nomenclature. Chemical Geology 29.183-210.
    De Paolo, D.J., 1981. A neodymiun and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges,California. Journal of Geophysical Research 86,10470-10488.
    de Saint Blanquat, M., Horsman, E., Habert, G., Morgan, S., Vanderhaeghe, O., Law, R.,Tikoff, B., 2011. Multiscale magmatic cyclicity, duration of pluton construction,and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20-33.
    Del Rey, A., Arriagada, C., Dekart, K., Martinez, F., 2016. Resolving the paradigm of the late Paleozoic-Triassic Chilean magmatism:Isotopic approach. Gondwana Research 37,172-181.
    DeCelles, P.G., Ducea, M.N., Kapp, P., Zandt, G., 2009. Cyclicity in Cordilleran orogenic systems. Nature Geoscience 2, 251-257.
    Diaz-Alvarado, J., 2017. Experimental early crystallization of K-feldspar in granitic systems. Implications on the origin of magmatic fabrics in granitic rocks.Geologica Acta. https://doi.org/10.1344/%25x.
    Diaz-Alvarado, J., Castro, A., Fernandez, C., Moreno-Ventas, I., 2011. Assessing bulk assimilation in cordierite-bearing granitoids from the Central System batholith,Spain; experimental, geochemical and geochronological constraints. Journal of Petrology 52, 223-256.
    Diaz-Alvarado, J., Fernandez, C., Diaz Azpiroz, M., Castro, A., Moreno-Ventas, I., 2012.Fabric evidence for granodiorite emplacement with extensional shear zones in the Variscan Gredos massif(Spanish Central System). Journal of Structural Geology 42, 74-90.
    Diaz-Alvarado, J., Fernandez, C., Castro, A., Moreno-Ventas, I., 2013. SHRIMP U-Pb zircon geochronology and thermalmodeling of multilayer granitoid intrusions.Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain. Lithos 175-176,104-123.
    Ducea, M.N., Bergantz, G., Saleeby, J.B., 2015a. The architecture, chemistry and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences 43. 299-331.
    Ducea, M.N., Paterson, S.R., DeCelles, P.G., 2015b. High-volume magmatic events in subduction systems. Elements 11, 99-104.
    Echaurren, A., Oliveros, V., Folguera, A., Ibarra, F., Creixell, C., Lucassen, F., 2017. Early Andean tectonomagmatic stages in north Patagonia:insights from field and geochemical data. Journal of the Geological Society 174(3). 405-421.
    Fiannacca, P., Cirrincione, R., Bonanno, F., Carciotto, M.M., 2015. Source-inherited compositional diversity in granite batholiths:the geochemical message of late Paleozoic intrusive magmatism in central Calabria(southern Italy). Lithos236-237.123-140.
    Fiannacca, P., Williams, I.S., Cirrincione, R., 2017. Timescales and mechanisms of batholith construction:Constraints from zircon oxygen isotopes and geochronology of the late Variscan Serre Batholith(Calabria, southern Italy). Lithos 277,302-314.
    Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001.A geochemical classification for granitic rocks. Journal of Petrology 42,2033-2048.
    Frost, C.D., Frost, B.R., Beard, J.S., 2016. On silica-rich granitoids and their eruptive equivalents. American Mineralogist 101,1268-1284.
    Fuentes, P., Diaz-Alvarado, J., FernAndez, C., Diaz-Azpiroz, M., Rodriguez, N., 2016.Structural analysis and shape-preferred orientation determination of the mélange facies in the Chanaral mélange, Las T6rtolas Formation, Coastal Cordillera,northern Chile. Journal of South American Earth Sciences 67, 40-56.
    Fuentes, P., Diaz-Alvarado, J., Rodriguez, N., Fernandez, C., Breitkreuz, C.,Contreras, A., 2017. Geochemistry, petrogenesis and tectonic significance of the volcanic rocks of the Las Tortolas Formation, Coastal Cordillera, northern Chile.Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2017.11.006.
    Gana, P., Tosdal, R.M.. 1996. Geocronología U-Pb y K-Ar en intrusivos del Paleozoico y Mesozoico de la Cordillera de la Costa, región de Valparaiso, Chile.Revista Geologica de Chile 23,151-164.
    Gerya, T.V., Yuen, D.A., Sevre, E.O.D., 2004. Dynamical causes for incipient magma chambers above slabs. Geology 32, 89-92.
    Gerya, T.V., Stoeckhert, B., 2006. 2-D numerical modeling of tectonic and metamorphic histories at active continental margins. International Journal of Earth Sciences 95, 250-274.
    Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., Taylor, R.Z., 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers. Geological Society of America Today 14, 4-11.
    Godoy, E., Lara, L, 1998. Hojas Chanaral y Diego de Almagro. Servicio Nacional de Geologia y Mineria. Mapas Geológicos, pp. 5-6(1:100.000), Santiago.
    González, J., Oliveros, V., Creixell, C., Velasquez, R., Vásquez, P., Lucassen, F., 2017.The Triassic magmatism and its relation with the Pre-Andean tectonic evolution:Geochemical and petrographic constrains from the High Andes of north central Chile(29°30'-30°S). Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2017.12.009.
    Gorczyk, W., Gerya, T.V., Connolly, J.A.D., Yuen, D.A., 2007. Growth and mixing dynamics of mantle wedge plumes. Geology 35, 587-590.
    Grocott, J., Taylor, G.K., 2002. Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes en the Coastal Cordillera, north Chilean Andes(25°30'S to 27°30'S). Journal of the Geological Society London 159,425-442.
    Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkins-Tanton, LT., Chatterjee, N.,Muntener, 0., 2005. Magnesian andesite and dacite lavas from Mt. Shasta,northern California:Products of fractional crystallization of H_2O-rich mantle melts. Contributions to Mineralogy and Petrology 148, 542-565.
    Hawkesworth, C.J., Kemp, A.I.S., 2006. Evolution of the continental crust. Nature443, 811-817.
    Hecht, L, Vigneresse, J.L, Morteani, J.. 1997. The origin of compositional zoning of the Fichtelgebirge pluton(Germany):Evidence from a gravimetric and geochemical study. Geologische Rundschau 86, 93-109.
    Hecht, L, Vigneresse, J.L, 1999. A multidisciplinary approach combining geochemical, gravity and structural data:implications for pluton emplacement and zonation. In:Castro, A., Fernández, C., Vigneresse, J.L(Eds.), Understanding Granites:Integrating New and Classical Techniques, vol. 168. Geological Society of London Special Publication, pp. 95-110.
    Herve, F., Pankhurst, R.J., Fanning, C.M., Calderon, M., Yaxley, G.M., 2007. The South Patagonian batholith:150 my of granite magmatism on a plate margin. Lithos97, 373-394.
    Hildreth, W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology 98,455-489.
    Huber, C., Bachmann, 0., Manga, M., 2010. Two competing effects of volatiles on heat transfer in crystal-rich magmas:thermal insulation vs. defrosting. Journal of Petrology 51, 847-867.
    Huber, C., Bachmann, 0., Dufek, J., 2011. Thermo-mechanical reactivation of locked crystal mushes:Melting-induced internal fracturing and assimilation processes in magmas. Earth and Planetary Science Letters 304, 443-454.
    Iriarte, S., Arevalo, C., Mpodozis, C., 1999. Hoja La Guardia, Region de Atacama.Servicio Nacional de Geologia y Mineria(Chile). Mapas Geologicos N°13,1 mapa escala 1:100.000, Santiago.
    Jeon, H., Williams, I.S., Chappell, B.W., 2012. Magma to mud to magma:rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin.Earth and Planetary Science Letters 319-320,104-117.
    Jeon, H., Whitehouse, M.J., 2014. A critical evaluation of u-pb calibration schemes used in SIMS zircon geochronology. Geostandards and Geoanalytical Research39. 443-452.
    Kelemen, P.B., Hanghoj, K., Greene, A.R., 2003. One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust. In:Rudnick, R.L(Ed.), The Crust. Elsevier. Amsterdam,pp. 593-659.
    Kirsch, M., Paterson, S.R., Wobbe, F., Martinez Ardila, A.M., Clausen, B.L,Alasino, P.H., 2016. Temporal histories of Cordilleran continental arcs:testing models for magmatic episodicity. American Mineralogist 101, 2133-2154.
    Kleiman, LE., Japas, M.S., 2009. The Choiyoi volcanic province at 34°S-36°S(San Rafael, Mendoza, Argentina):Implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473(3-4), 283-299.
    Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68,277-279.
    Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745-750.
    Ludwig, K.J., 2003. Isoplot 3.00. Berkeley Geochronology Center Special Publication,4, 70pp.
    Maksaev, V., Munizaga, F., Tassinari, C., 2014. Timing of the magmatism of the paleo-Pacific border of Gondwana:U-Pb geochronology of Late Paleozoic to Early Mesozoic igneous rocks of the north Chilean Andes between 20°and 31°S.Andean Geology 41, 447-506.
    McKay, M.P., Weislogel, A.L, Fildani, A. Brunt, R.L, Hodgson, D.M., Flint, S.S., 2015. U-PB zircon tuff geochronology from the Karoo Basin, South Africa:implications of zircon recycling on stratigraphic age controls. International Geology Review 57, 393-410.
    Miller, C., Wooden, J.. 1994. Anatexis, hybridization, and the modification of ancient crust:mesozoic plutonism in the Old Woman Mountains area, California. Lithos32,111-133.
    Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31,529-532.
    Miller, J.S., Matzel, J.E.P., Miller, C.F., Burgess, S.D., Miller, R.B., 2007. Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research 167, 281-299.
    Miller, C.F., Furbish, D.J., Walker, B.A., Claiborne, LL, Koteas, G.C., Bleick, H.A.,Miller, J.S., 2011. Growth of plutons by incremental emplacement of sheets in crystal-rich host:Evidence from Miocene intrusions of the Colorado River region, Nevada, USA. Tectonophysics 500, 65-77.
    McKay, M.P., Jackson Jr., W.T., Hessler, A.M., 2018. Tectonic stress regime recorded by zircon Th/U. Gondwana Research 57,1-9.
    Moyen, J.F., 2009. High Sr/Y and La/Yb ratios:the meaning of the"adakitic signature". Lithos 112, 556-574.
    Mpodozis, C., Kay, S., 1992. Late Paleozoic to Triassic evolution of the pacific Gondwana margin:evidence from Chilean frontal Cordilleran batholiths. The Geological Society of America Bulletin 104, 999-1014.
    Mpodozis, C., Ramos, V.A., 1989. The Andes of chile and argentina. In:Ericksen, G.E.,Canas Pinochet, M.T., Reinemud, J.A.(Eds.), Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources:Circumpacific Council for Energy and Mineral Resources, Earth Sciences Series, vol. 11, pp. 59-90.
    Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757-775.
    Oliveros, V., 2005. Etude geochronologique des unités jurassiques et Cr6tacéInférieur du Noprd du Chili(18°30'-24°S, 600°30'-70°30'W):Origine, mise en place, alteration,metamorphisme et minéralisations associées. Thesis. Universitéde Nice-Sophia Antipolis and Depatamento de Geología, Universidad de Chile, Santiago.
    Otamendi, J.E., Vujovich, G.I., De la Rosa.J.D., Tibaldi, A.M., Castro, A., Martino, R.D.,Pinotti, LP., 2009. Geology and petrology of a deep crustal zone from the Famatinian paleo-arc, Sierras de Valle Fertil and La Huerta, San Juan, Argentina.Journal of South American Earth Sciences 27, 258-279.
    Pankhurst, R.J., Weaver, S.D., Herve, F., Larrondo, P., 1999. Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile. Journal of the Geological Society 156, 673-694.
    Pappalardo, L, Mastrolorenzo, G., 2012. Rapid differentiation in a sill-like magma reservoir:a case study from the Campi Flegrei caldera. Scientific Reports 2.
    Parada, M.A., 1992. Contribución a la geoquimica del complejo Plut6nico PapudoQuinteros, Chile central:implicancias petrogeneticas. Revista Geologica de Chile 19.199-210.
    Parada, M.A., Nystr(o|¨)m, J.O., Levi, B., 1999. Multiple sources for the coastal batholith of central Chile(31°-34°S):Geochemical and Sr-Nd isotopic evidence and tectonic implications. Lithos 46, 505-521.
    Parada, M.A., Lòpez-Escobar, L, Oliveros, V., Fuentes, F., Morata, D., Calder6n, M.,Aguirre, L, Feraud, G., Espinoza, F., Moreno, H., Figueroa, 0., Mufioz Bravo, J.,Troncoso Vasquez, R., Stern, C.R., 2007. Andean Magmatism. In:Moreno, T.,Gibbons, W.(Eds.), The Geology of Chile, the Geological Society, Londres,pp. 115-146.
    Paterson, S.R., Zák, J., Janouzek, V., 2008. Growth of complex sheeted zones during recycling of older magmatic units into younger:Sawmill Canyon area, Tuolumne batholith, Sierra Nevada, California. Journal of Volcanology and Geothermal Research 177, 457-484.
    Paterson, S.R., Okaya, D., Memeti, V., Economos, R., Miller, R.B., 2011. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs:Combined field, geochronologic, and thermal modeling studies. Geosphere 7,1439-1468.
    Paterson, S.R., Ducea, M.N., 2015. Arc magmatic tempos:gathering the evidence.Elements 11, 91-98.
    Patino-Douce, A.E., 1995. Experimental generation of hybrid silicic melts by reaction of high-AI basalt with metamorphic rocks. Journal of Geophysical Research 100,15623-15639.
    Pearce, J.A, Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams forthe tectonic interpretation of granitic rocks. Journal of Petrology 25,956-983.
    Pereira, M.F., Chichorro, M., Johnston, S.T., Gutierrez-Alonso, G., Silva, J.B.,Linnemann, U., Hofmann, M., Drost, K., 2012. The missing Rheic Ocean magmatic arcs:provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Research 22, 882-891.
    Pereira, M.F., Castro, A., Chichorro, M., Fernandez, C., Díaz-Alvarado, J., Marti, J.,Rodriguez, C., 2014. Chronological link between deep-seated processes in magma chambers and eruptions:Permo-Carboniferous magmatism in the core of Pangaea(Southern Pyrenees). Gondwana Research 25, 290-308.
    Pereira, M.F., Chichorro, M., Moita, P., Santos, J.F., Solá, A.M.R., Williams, I.S.,Silva, J.B., Armstrong, R.A., 2015. The multistage crystallization of zircon in calcalkaline granitoids:U-Pb age constraints on the timing of Variscan tectonic activity in SW Iberia. International Journal of Earth Sciences 104,1167-1183.
    Petford, N., Cruden, A.R., McCaffrey, K.J.W., Vigneresse, J.L, 2000. Granite magma formation, transport and emplacement in the Earth's crust Nature 408,669-673.
    Rapela, C.W., Tosseli, A., Heaman, L, Saavedra, J., 1990. Granite plutonism of the Sierras Pampeanas; an inner cordilleran Paleozoic arc in the southern Andes. In:Kay, S.M., Rapela, C.W.(Eds.), Plutonism from Antarctica to Alaska, Special Paper, vol. 241, pp. 77-90.
    Rodriguez, N., Diaz-Alvarado, J., Rodriguez, C., Riveros, K., Fuentes, P., 2016.Petrology, geochemistry and thermobarometry of the northern area of the Flamenco pluton, Coastal Range batholith, northern Chile. A thermal approach to the emplacement processes in the Jurassic andean batholiths. Journal of South American Earth Sciences 67,122-139.
    Rubatto, D.,2002. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology 184,123-138.
    Rudnick, R.L., 1995. Making continental crust. Nature 378, 571-578.
    Sato, K., Tassinari, C.C.G., Basei, M.A.S., Siga Junior, O., Takashi, A.O., Souza, M.A.,2014. Sensitive High Resolution Ion Microprobe(SHRIMP Ile/MC)of the Institute of Geosciences of the University of Sao Paulo, Brazil:analytical method and first results. Revista do Instituto de Geociencias-USP, Geol. USP, Ser. cient., Sao Paulo 14(3), 18.
    Scheuber, E., Bogdanic, T., Jensen, A., Reutter, K.J., 1994. Tectonic development of the North Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In:Reutter, K.-J., Scheuber, E., Wigger, P.(Eds.), Tectonics of the Southern Central Andes. Structure and Evolution of an Active Continental Margin. Springer, Heidelberg, pp. 121-140.
    Scheuber, E., González, G., 1999. Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera(22°-26°S):A story of crustal deformation along a convergent plate boundary. Tectonics 18, 895-910.
    Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology 148, 635-661.
    Spencer, C.J., Kirkland, C.L., Taylor,RJ.M., 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers 7, 581-589.
    Steiger, R., Jaeger, E., 1977. Subcommission on geochronology:convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters 36, 359-362.
    Suárez, M., Naranjo, J.A., Puig, A., 1985. Estratigrafia de la Cordillera de la Costa al sur de Taltal, Chile:Etapas iniciales de la evolución andina. Revista Geologica de Chile 24.19-28.
    Suarez, M., Bell, M., 1992. Triassic rift-related sedimentary basins in northern Chile(24°-29°S). Journal of South American Earth Sciences 6.109-121.
    Teixeira, RJ.S., Neiva, A.M.R., Silva, P.B., Gomes, M.E.P., Andersen, T., Ramos.J.M.F.,2011. Combined U-Pb geochronology and Lu-Hf isotope systematics by LAM-ICPMS of zircons from granites and metasedimentary rocks of Carrazeda de Ansiaes and Sabugal areas, Portugal, to constrain granite sources. Lithos 125,321-334.
    Thompson, A.B., Matile, L, Ulmer, P., 2002. Some thermal constraints on crustal assimilation during fractionation of hydrous, mantle-derived magmas with examples from Central Alpine Batholiths. Journal of Petrology 43, 403-422.
    Vigneresse. J.L, 1995. Control of granite emplacement by regional deformation.Tectonophysics 249,173-186.
    Vigneresse, J.L, Barbey, P., Cuney, M., 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology 37,1579-1600.
    Villaseca, C., Orejana, D., Belousova, EA, 2012. Recycled metaigneous crustal sources for S-and I-type Variscan granitoids from the Spanish Central System batholith:constraints from Hf isotope zircon composition. Lithos 153,84-93.
    Wagner, LS., Beck, S., Zandt, G., 2005. Upper mantle structure in the south central Chile subduction zone(30°to 36°S). Journal of Geophysical Research 110,B01308. https://doi.org/10.1029/2004JB003238.
    Walker, B.A., Bergantz, G.W., Otamendi, J.E., Ducea, M.N., Cristofolini, E.B., 2015.
    Wang, X., Griffin, W.L, Chen, J., Huang, P., Li, X., 2011. U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks:Improved zircon-melt distribution coefficients. Acta Geologica Sinica 85.164-174.
    Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295-304.
    Welkner, D., Arevalo, C., Godoy, E., 2006. Geologia del area Freirina-El Morado,Región de Atacama. Servicio Nacional de Geologia y Minería, Carta Geol6gica de Chile, Serie Geología Básica 100, p. 50,1 mapa 1:100.000.
    Wendt, I., Carl, C., 1991. The statistical distribution of the mean squared weighted deviation. Chemical Geology:Isotope Geoscience section 86, 275-285.
    Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In:McKibben, MA,Shanks, W.C., Ridley, W.I.(Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, vol. 7,pp. 1-35.
    Williams, I.S., 2001. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting,Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences48, 557-580.
    Wilson, M., 1989. Igneous Petrogenesis. A Global Tectonic Approach. Unwin Hyman,London, p. 466.
    Wyllie, P.J., Huang, W.L, Stern, C.R., Maaloe, S., 1976. Granitic magmas:possible and impossible sources, water contents, and crystallization sequences. Canadian Journal of Earth Sciences 13,1007-1019.
    Wyllie, P.J., 1977. From Crucibles through Subduction to Batholiths. In:Saxena, S.K.,Bhattacharjia(Eds.), Energetics of Geological Processes. Springer Verlag,pp. 389-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700