基于有机朗肯循环的太阳能驱动冷热电联供系统设计方法及性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design Method and Performance Analysis of CCHP Driven by Solar Energy and Based on Organic Rankine Cycle
  • 作者:马铭璐 ; 邓帅 ; 赵力 ; 林杉 ; 张莹 ; 倪佳鑫 ; 苏文
  • 英文作者:MA Minglu;DENG Shuai;ZHAO Li;LIN Shan;ZHANG Ying;NI Jiaxin;SU Wen;Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University;
  • 关键词:太阳能 ; ORC ; CCHP ; 设计辐射 ; 设计方法
  • 英文关键词:solar energy;;ORC;;CCHP;;design radiation;;design method
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:天津大学中低温热能高效利用教育部重点实验室;
  • 出版日期:2019-03-30 18:30
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家海洋经济创新发展示范(舰船余热驱动冷热电淡水多联供设备开发与测试公共服务平台);; 天津市科技支撑计划(15ZCZDGX01030)资助项目
  • 语种:中文;
  • 页:JXXB201906025
  • 页数:8
  • CN:06
  • ISSN:11-2187/TH
  • 分类号:192-199
摘要
经济发展与环境污染解耦发展的新模式,促使利用太阳能等可再生能源的冷热电联供系统(Combined cooling heating and powersystem,CCHP系统)研究成为热点。针对一种太阳能光热驱动的串联式CCHP系统展开研究,系统由槽式集热器(Parabolic trough collector,PTC)、集热环路、储热罐、补燃锅炉、有机朗肯发电循环(Organic rankine cycle, ORC)和溴化锂吸收式制冷循环组成,夏季供冷,冬季供暖,全年供电。提出一套针对系统PTC面积、储热罐和补燃锅炉容量的工程设计方法,可分别采用能量利用效率、年值费用和效率与费用的耦合式作为系统的设计指标。基于该方法,针对一个实际建筑,以耦合指标为例,确定出系统关键部件容量,并应用上述三种不同指标,对设计辐射、太阳能保证率和储能比例的敏感程度进行分析。结果表明,为了在设计阶段使三种评价指标达到最优,随着设计辐射量的增加,选取的太阳能保证率也应增加。
        Under the new decoupling development pattern of economic development and environmental pollution, combined cooling,heating and power system(CCHP) using renewable energy sources such as solar energy has become a hot spot. Integrated with solar energy, a CCHP system which can meet cooling load in summer, provide heat in winter and supply electricity throughout the year is investigated. The system contains a parabolic trough collector(PTC) circuit, a heat storage tank, an auxiliary boiler, an organic Rankine cycle(ORC) and an absorption cooling system. A design method to determine the PTC area of the system, the capacity of the storage tank and the backup boiler is proposed, which can choose system energy efficiency, annual total cost or the coupling between efficiency and cost as evaluation criteria. Based on this method combined with a building simulation load, the capacity of the key components is determined using the evaluation criteria of coupling between efficiency and cost as an example. The sensitivity of design radiation, solar energy assurance rate and storage ratio were analyzed by using the above three evaluation criteria. The result shows that, in order to optimize the three evaluation criteria, the solar energy assurance rate should increase as the design radiation increases.
引文
[1]苏亚欣,费正定,杨翔翔.太阳能冷热电联供分布式能源系统的研究[J].能源工程,2004,5:24-27.SU Yaxin,FEI Zhengding,YANG Xiangxiang.Investigation on the distributed energy system for cooling-heating-power combined cycle driven by solar energy[J].Energy Engineering,2004,5:24-27.
    [2]洪光,张新铭,李建军.内置热泵的热电冷联合有机朗肯循环能效分析[J].合肥工业大学学报,2012,35(10):1297-1301.HONG Guang,ZHANG Xinming,LI Jianjun.Thermodynamic analysis of combined cooling heat and power-organic rankine cycle system installed with heat pump[J].Journal of Hefei University of Technology,2012.35(10):1297-1301.
    [3]AL-SULAIMAN F A,HAMDULLAHPUR F,DINCERI.Performance assessment of a novel system using parabolic trough solar collectors for combined cooling,heating,and power production[J].Renewable Energy,2012,48:161-172.
    [4]HAJABDOLLAHI H.Evaluation of cooling and thermal energy storage tanks in optimization of multi-generation system[J].Journal of Energy Storage,2015,4:1-13.
    [5]ZENG R,LI H,LIU L,et al.A novel method based on multi-population genetic algorithm for CCHP-GSHPcoupling system optimization[J].Energy Conversion and Management,2015,105:1138-1148.
    [6]BOYAGHCHI F A,CHAVOSHI M,SABETI V.Optimization of a novel combined cooling,heating and power cycle driven by geothermal and solar energies using the water/CuO(copper oxide)nanofluid[J].Energy,2015,91:685-699.
    [7]BOYAGHCHI F A,HEIDARNEJAD P.Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on organic rankine cycle for domestic application[J].Energy Conversion and Management,2015,97:224-234.
    [8]BOYAGHCHI F A,MONTAZERINEJAD H.Multi-objective optimisation of a novel combined cooling,heating and power system integrated with flat plate solar collectors using water/Cu O nanofluid[J].International Journal of Exergy,2016,21(2):202-238.
    [9]WANG M,WANG J,ZHAO P,et al.Multi-objective optimization of a combined cooling,heating and power system driven by solar energy[J].Energy Conversion and Management,2015,89:289-297.
    [10]GARG P,OROSZ M S,KUMAR P.Thermo-economic evaluation of ORCs for various working fluids[J].Applied Thermal Engineering,2016,109:841-853.
    [11]VALENZUELA L,L PEZ-MART N R,ZARZA E.Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments:A test method and a case study[J].Energy,2014,70:456-464.
    [12]WANG J,ZHAI Z,JING Y,et al.Influence analysis of building types and climate zones on energetic,economic and environmental performances of BCHP systems[J].Applied Energy,2011,88(9):3097-3112.
    [13]WANG J J,JING Y Y,ZHANG C F.Optimization of capacity and operation for CCHP system by genetic algorithm[J].Applied Energy,2010,87(4):1325-1335.
    [14]BOYAGHCHI F A,CHAVOSHI M.Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy,exergoeconomic and exergoenvironmental concepts[J].Applied Thermal Engineering,2017,112:660-675.
    [15]EL-EMAM R S,DINCER I.Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle[J].Applied Thermal Engineering,2013,59(1-2):435-444.
    [16]PIEROBON L,NGUYEN T V,LARSEN U,et al.Multi-objective optimization of organic Rankine cycles for waste heat recovery:Application in an offshore platform[J].Energy,2013,58(3):538-549.
    [17]WANG Jiangjiang,ZHAI Zhiqiang,JING Youyin,et al.Particle swarm optimization for redundant building cooling heating and power system[J].Applied Energy,2010,87(12):3668-3679.
    [18]黄畅,侯宏娟,丁泽宇,等太阳能辅助燃煤发电系统蓄热运行策略优化[J].工程热物理学报,2017,38(3):453-458.HUANG Chang,HOU Hongjuan,DING Zeyu,et al.Optimization of storage operation strategy for solar aided coal-fired power generation(SACPG)System[J].Joumal of Engineering Thermophysics,2017,38(3):453-458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700