水产养殖环境胁迫对鱼类表观遗传的影响研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of aquaculture environmental stress on epigenetic regulation in fish: a review
  • 作者:杨震飞 ; 刘波 ; 戈贤平 ; 宋长友 ; 张慧敏 ; 单凡
  • 英文作者:YANG Zhen-fei;LIU Bo;GE Xian-ping;SONG Chang-you;ZHANG Hui-min;SHAN Fan;Wuxi Fisheries College,Nanjing Agricultural University;Freshwater Fisheries Research Center,Chinese Academy of Fishery Sciences;
  • 关键词:环境胁迫 ; 表观遗传 ; 水产养殖 ; 研究进展
  • 英文关键词:environmental stress;;epigenetic;;aquaculture;;research progress
  • 中文刊名:DLSC
  • 英文刊名:Journal of Dalian Ocean University
  • 机构:南京农业大学无锡渔业学院;中国水产科学研究院淡水渔业研究中心;
  • 出版日期:2018-04-25 11:18
  • 出版单位:大连海洋大学学报
  • 年:2018
  • 期:v.33
  • 基金:中国水产科学研究院淡水渔业研究中心基本科研业务费专项(2017JBFZ04);; 江苏省农业科技自主创新项目[CX(16)1004];; 江苏省水产三新工程项目(D2016-18);; 国家现代农业产业技术体系建设专项(CARS-47)
  • 语种:中文;
  • 页:DLSC201802021
  • 页数:13
  • CN:02
  • ISSN:21-1575/S
  • 分类号:137-149
摘要
表观遗传学是研究基因核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象较多,已有DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控、基因组印记、基因沉默、母体效应、核仁显性、休眠转座子激活等。在集约化的水产养殖模式中,养殖密度提高,投喂过量等均会产生刺激鱼类生长的环境因素。已有文献报道,环境胁迫因素刺激可影响鱼类表观遗传修饰,但并未涉及遗传信息的变化,所以在一定范围内可以解释为表型变化。本研究围绕环境胁迫因素对鱼类表观遗传产生的影响进行了综述,为进一步阐释环境因素与基因互作关系提供了参考。
        The process of epigenetic as a branch of genetics dealing with the heritable changes in gene expression without change in the nucleotide sequence includes DNA methylation,histone modification,chromatin remodeling,noncoding RNA regulation,genomic imprinting,gene silencing,maternal effects,nucleolar dominance and dormant transposon activation. In intensive aquaculture,some environmental factors affect the growth of fish due to high stoking density,excessive feeding quantity. Up to now,more and more studies have confirmed that environmental factors alter fish epigenetic modifications,which do not involve in changing DNA sequence. So it can explain the phenotype of creature in some extend. This article focused on the influence of environmental factors on fish epigenetic changes. Overall,this review will help us get better understanding of the relationship between environmental factors and gene expression regulation.
引文
[1]麦康森,艾庆辉,徐玮,等.水产养殖中的环境胁迫及其预防——营养学途径[J].中国海洋大学学报,2004,34(5):767-774.
    [2]Deans C,Maggert K A.What do you mean,“epigenetic”?[J].Genetics,2015,199(4):887-896.
    [3]Seo M K,Ly N N,Lee C H,et al.Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus[J].Neuropharmacology,2016,105:388-397.
    [4]Weidman J R,Dolinoy D C,Murphy S K,et al.Cancer susceptibility:epigenetic manifestation of environmental exposures[J].Cancer Journal,2007,13(1):9-16.
    [5]Goldberg A D,Allis C D,Bernstein E.Epigenetics:a landscape takes shape[J].Cell,2007,128(4):635-638.
    [6]Cox B D.On the difficulty in getting out of historical ruts:waddington and an argument for behavioral epigenetics[J].New Ideas in Psychology,2013,31(3):374-389.
    [7]Aniagu S O,Williams T D,Allen Y,et al.Global genomic methylation levels in the liver and gonads of the three-spine stickleback(Gasterosteus aculeatus)after exposure to hexabromocyclododecane and 17-βoestradiol[J].Environment International,2008,34(3):310-317.
    [8]Nelissen E C M,van Montfoort A P A,Dumoulin J C M.Epigenetics and the placenta[J].Human Reproduction Update,2010,17(3):397-417.
    [9]王杰,徐友信,刁其玉,等.非孟德尔遗传模式:表观遗传学及其应用研究进展[J].中国农学通报,2016,32(14):37-43.
    [10]Kurdyukov S,Bullock M.DNA methylation analysis:choosing the right method[J].Biology,2016,5(1):3.
    [11]Si Yufeng,Ding Yuxia,He Feng,et al.DNA methylation level of cyp19a1a and Foxl2 gene related to their expression patterns and reproduction traits during ovary development stages of Japanese flounder(Paralichthys olivaceus)[J].Gene,2016,575(2):321-330.
    [12]Rasmussen K D,Helin K.Role of TET enzymes in DNA methylation,development,and cancer[J].Genes&Development,2016,30(7):733-750.
    [13]Kohli R M,Zhang Yi.TET enzymes,TDG and the dynamics of DNA demethylation[J].Nature,2013,502(7472):472-479.
    [14]Gong Zhizhong,Morales-Ruiz T,Ariza R R,et al.ROS1,a repressor of transcriptional gene silencing in Arabidopsis,encodes a DNA glycosylase/lyase[J].Cell,2002,111(6):803-814.
    [15]Li Xiaojie,Qian Weiqiang,Zhao Yusheng,et al.Antisilencing role of the RNA-directed DNA methylation pathway and a histone acetyltransferase in Arabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(28):11425-11430.
    [16]Qian Weiqiang,Miki D,Zhang Heng,et al.A histone acetyltransferase regulates active DNA demethylation in Arabidopsis[J].Science,2012,336(6087):1445-1448.
    [17]Zhao Yusheng,Xie Shaojun,Li Xiaojie,et al.Repressor of silencing5 encodes a member of the small heat shock protein family and is required for DNA demethylation in arabidopsis[J].Plant Cell,2014,26(6):2660-2675.
    [18]Qian Weiqiang,Miki D,Lei Mingguang,et al.Regulation of active DNA demethylation by anα-crystallin domain protein in Arabidopsis[J].Molecular Cell,2014,55(3):361-371.
    [19]Li Yan,Córdoba-Ca1ero D,Qian Weiqiang,et al.An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis[J].PLo S Genetics,2015,11(1):e1004905.
    [20]Lee J,Jang H,Shin H,et al.AP endonucleases process 5-methylcytosine excision intermediates during active DNA demethylation in Arabidopsis[J].Nucleic Acids Research,2014,42(18):11408-11418.
    [21]Lang Zhaobo,Lei Mingguang,Wang Xingang,et al.The MethylCp G-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing[J].Molecular Cell,2015,57(6):971-983.
    [22]Li Qi,Wang Xiaokang,Sun Han,et al.Regulation of active DNA demethylation by a methyl-Cp G-binding domain protein in Arabidopsis thaliana[J].PLo S Genetics,2015,11(5):e1005210.
    [23]Kouzarides T.Chromatin modifications and their function[J].Cell,2007,128(4):693-705.
    [24]Jiang C,Pugh B F.Nucleosome positioning and gene regulation:advances through genomics[J].Nature Reviews Genetics,2009,10(3):161-172.
    [25]Sun Weijian,Zhou Xiang,Zheng Jihang,et al.Histone acetyltransferases and deacetylases:molecular and clinical implications to gastrointestinal carcinogenesis[J].Acta Biochimica et Biophysica Sinica,2012,44(1):80-91.
    [26]Clements E G,Mohammad H P,Leadem B R,et al.DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes[J].Nucleic Acids Research,2012,40(10):4334-4346.
    [27]Allfrey V G,Faulkner R,Mirsky A E.Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[J].Proceedings of the National Academy of Sciences of the United States of America,1964,51(5):786-794.
    [28]Pogo B G T,Allfrey V G,Mirsky A E.RNA synthesis and histone acetylation during the course of gene activation in lymphocytes[J].Proceedings of the National Academy of Sciences of the United States of America,1966,55(4):805-812.
    [29]Hon G C,Hawkins R D,Ren B.Predictive chromatin signatures in the mammalian genome[J].Human Molecular Genetics,2009,18(R2):R195-R201.
    [30]Schmitges F W,Prusty A B,Faty M,et al.Histone methylation by PRC2 is inhibited by active chromatin marks[J].Molecular Cell,2011,42(3):330-341.
    [31]Banerjee T,Chakravarti D.A peek into the complex realm of histone phosphorylation[J].Molecular and Cellular Biology,2011,31(24):4858-4873.
    [32]He Yingzi,Tang Dongmei,Cai Chengfu,et al.LSD1 is required for hair cell regeneration in zebrafish[J].Molecular Neurobiology,2016,53(4):2421-2434.
    [33]Wang Yang,Li Yuejiao,Guo Chen,et al.ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells[J].Nucleic Acids Research,2016,44(14):6741-6755.
    [34]Tse C,Sera T,Wolffe A P,et al.Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III[J].Molecular and Cellular Biology,1998,18(8):4629-4638.
    [35]Wang A,Kurdistani S K,Grunstein M.Requirement of Hos2 histone deacetylase for gene activity in yeast[J].Science,2002,298(5597):1412-1414.
    [36]Riddihough G,Pennisi E.The evolution of epigenetics[J].Science,2001,293(5532):1063.
    [37]Racki L R,Narlikar G J.ATP-dependent chromatin remodeling enzymes:two heads are not better,just different[J].Current Opinion in Genetics&Development,2008,18(2):137-144.
    [38]Wang G G,Allis C D,Chi Ping.Chromatin remodeling and cancer,part I:covalent histone modifications[J].Trends in Molecular Medicine,2007,13(9):363-372.
    [39]Barrett R M,Wood M A.Beyond transcription factors:The role of chromatin modifying enzymes in regulating transcription required for memory[J].Learning&Memory,2008,15(7):460-467.
    [40]Taverna S D,Li Haitao,Ruthenburg A J,et al.How chromatinbinding modules interpret histone modifications:Lessons from professional pocket pickers[J].Nature Structural&Molecular Biology,2007,14(11):1025-1040.
    [41]Li Bing,Carey M,Workman J L.The role of chromatin during transcription[J].Cell,2007,128(4):707-719.
    [42]Gangaraju V K,Bartholomew B.Mechanisms of ATP dependent chromatin remodeling[J].Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2007,618(1-2):3-17.
    [43]Peterson C L,Herskowitz I.Characterization of the yeast SWI1,SWI2,and SWI3 genes,which encode a global activator of transcription[J].Cell,1992,68(3):573-583.
    [44]Mattick J S,Makunin I V.Non-coding RNA.Human Molecular Genetics,2006,15(S1):R17-R29.
    [45]Ma Lina,Bajic V B,Zhang Zhang.On the classification of long non-coding RNAs[J].RNA Biology,2013,10(6):924-933.
    [46]Quinn J J,Chang H Y.Unique features of long non-coding RNA biogenesis and function[J].Nature Reviews Genetics,2016,17(1):47.
    [47]Cech T R,Steitz1 J A.The noncoding RNA revolution—trashing old rules to forge new ones[J].Cell,2014,157(1):77-94.
    [48]刘旭,单革.非编码RNA对基因转录的调控[J].生命科学,2016,28(5):569-575.
    [49]Kim D H,Saetrom P,Snve Jr O,et al.Micro RNA-directed transcriptional gene silencing in mammalian cells[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(42):16230-16235.
    [50]Salda1a-Meyer R,González-Buendía E,Guerrero G,et al.CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript,Wrap53[J].Genes&Development,2014,28(7):723-734.
    [51]Pickering A D.Environmental stress and the survival of brown trout,salmo trutta[J].Freshwater Biology,1989,21(1):47-55.
    [52]Liu B,Xu P,Brown P B,et al.The effect of hyperthermia on liver histology,oxidative stress and disease resistance of the Wuchang bream,Megalobrama amblycephala[J].Fish&Shellfish Immunology,2016,52:317-324.
    [53]Navarro-Martín L,Vi1as J,Ribas L,et al.DNA methylation of the gonadal aromatase(cyp19a)promoter is involved in temper ature-dependent sex ratio shifts in the european sea bass[J].PLo S Genetics,2011,7(12):e1002447.
    [54]Jabbari K,CacciòS,de Barros J P P,et al.Evolutionary changes in Cp G and methylation levels in the genome of vertebrates[J].Gene,1998,205(1-2):109-118.
    [55]Johnston I A,Lee H T,Macqueen D J,et al.Embryonic temperature affects muscle fibre recruitment in adult zebrafish:genomewide changes in gene and micro RNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes[J].Journal of Experimental Biology,2009,212(Pt 12):1781-1793.
    [56]李尚俊,孙国华,李雪燕,等.高温胁迫下仿刺参表观遗传调控相关基因的表达特征[J].中国水产科学,2017,24(3):470-476.
    [57]Fernandes J M,Mac Kenzie M G,Kinghorn J R,et al.Fox K1 splice variants show developmental stage-specific plasticity of expression with temperature in the tiger pufferfish[J].Journal of Experimental Biology,2007,210(Pt 19):3461-3472.
    [58]Campos C,Valente L M P,Fernandes J M O.Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development[J].Gene,2012,500(1):93-100.
    [59]朱华平,卢迈新,黄樟翰,等.低温对罗非鱼基因组DNA甲基化的影响[J].水产学报,2013,37(10):1460-1467.
    [60]Giannetto A,Nagasawa K,Fasulo S,et al.Influence of photoperiod on expression of DNA(cytosine-5)methyltransferases in Atlantic cod[J].Gene,2013,519(2):222-230.
    [61]Kim D J,Seok S H,Baek M W,et al.Benomyl induction of brain aromatase and toxic effects in the zebrafish embryo[J].Journal of Applied Toxicology,2009,29(4):289-294.
    [62]Vandegehuchte M B,Lemière F,Vanhaecke L,et al.Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation[J].Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,2009,151(3):278-285.
    [63]Guerrero-Bosagna C,Settles M,Lucker B,et al.Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome[J].PLo S One,2010,5(9):e13100.
    [64]Str9mqvist M,Tooke N,Brunstr9m B.DNA methylation levels in the 5'flanking region of the vitellogenin I gene in liver and brain of adult zebrafish(Danio rerio)—Sex and tissue differences and effects of 17α-ethinylestradiol exposure[J].Aquatic Toxicology,2010,98(3):275-281.
    [65]Prins G S,Tang W Y,Belmonte J,et al.Perinatal exposure to oestradiol and bisphenol a alters the prostate epigenome and increases susceptibility to carcinogenesis[J].Basic&Clinical Pharmacology&Toxicology,2008,102(2):134-138.
    [66]Pierron F,Colombier S B D,Moffett A,et al.Abnormal ovarian DNA methylation programming during gonad maturation in wild contaminated fish[J].Environmental Science&Technology,2014,48(19):11688-11695.
    [67]Xing Houjuan,Wang Chao,Wu Hongda,et al.Effects of atrazine and chlorpyrifos on DNA methylation in the brain and gonad of the common carp[J].Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,2015,168:11-19.
    [68]Seemann F,Jeong C B,Zhang Ge,et al.Ancestral benzo[a]pyrene exposure affects bone integrity in F3 adult fish(Oryzias latipes)[J].Aquatic Toxicology,2016,183:127-134.
    [69]夏菠.Cr(Ⅵ)和B[a]P对16HBE细胞的联合毒性效应及表观遗传改变的研究[D].长沙:中南大学,2012.
    [70]Baccarelli A,Bollati V.Epigenetics and environmental chemicals[J].Current Opinion in Pediatrics,2009,21(2):243-251.
    [71]Lee Y W,Broday L,Costa M.Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis,1998,415(3):213-218.
    [72]Uthus E O,Davis C.Dietary arsenic affects dimethylhydrazine-induced aberrant crypt formation and hepatic global DNA methylation and DNA methyltransferase activity in rats[J].Biological Trace Element Research,2005,103(2):133-145.
    [73]Bagnyukova T V,Luzhna L I,Pogribny I P,et al.Oxidative stress and antioxidant defenses in goldfish liver in response to shortterm exposure to arsenite[J].Environmental and Molecular Mutagenesis,2007,48(8):658-665.
    [74]周新文,朱国念,Mwalilino J,等.Cu、Zn、Pb、Cd及其混合重金属离子对鲫鱼(Carassius auratus)DNA甲基化水平的影响[J].中国环境科学,2001,21(6):546-552.
    [75]王丙莲,张迎梅,谭玉凤,等.镉铅对泥鳅DNA甲基化水平的影响[J].毒理学杂志,2006,20(2):78-80.
    [76]Sánchez-Martín F J,Lindquist D M,Landero-Figueroa J,et al.Sex-and tissue-specific methylome changes in brains of mice perinatally exposed to lead[J].Neuro Toxicology,2015,46:92-100.
    [77]Pierron F,Baillon L,Sow M,et al.Effect of low-dose cadmium exposure on DNA methylation in the endangered European eel[J].Environmental Science&Technology,2014,48(1):797-803.
    [78]Chilcote M W C,Goodson K W G,Falcy M R.Reduced recruitment performance in natural populations of anadromous salmonids associated with hatchery-reared fish[J].Canadian Journal of Fisheries and Aquatic Sciences,2011,68(3):511-522.
    [79]Blouin M S,Thuillier V,Cooper B,et al.No evidence for large differences in genomic methylation between wild and hatchery steelhead(Oncorhynchus mykiss)[J].Canadian Journal of Fisheries and Aquatic Sciences,2010,67(2):217-224.
    [80]Lv Jianjian,Liu Ping,Gao Baoquan,et al.The identification and characteristics of salinity-related micro RNAs in gills of Portunus trituberculatus[J].Cell Stress and Chaperones,2016,21(1):63-74.
    [81]Yan Biao,Zhao Lihui,Guo Jinliang,et al.mi R-429 regulation of osmotic stress transcription factor 1(OSTF1)in tilapia during osmotic stress[J].Biochemical and Biophysical Research Communications,2012,426(3):294-298.
    [82]Flynt A S,Thatcher E J,Burkewitz K,et al.mi R-8 micro RNAs regulate the response to osmotic stress in zebrafish embryos[J].The Journal of Cell Biology,2009,185(1):115-127.
    [83]Guo Hui,Xian Jian'an,Li Bin,et al.Gene expression of apo ptosis-related genes,stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress[J].Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,2013,157(4):366-371.
    [84]Sun Shengming,Ge Xiangping,Zhu Jian,et al.Identification and m RNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream(Megalobrama amblycephala Yih)in response to acute nitrite exposure[J].Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,2014,159:69-77.
    [85]Cheng Changhong,Yang Fangfang,Ling Renzhi,et al.Effects of ammonia exposure on apoptosis,oxidative stress and immune response in pufferfish(Takifugu obscurus)[J].Aquatic Toxicology,2015,164:61-71.
    [86]Mennigen J A,Skiba-Cassy S,Panserat S.Ontogenetic expression of metabolic genes and micro RNAs in rainbow trout alevins during the transition from the endogenous to the exogenous feeding period[J].The Journal of Experimental Biology,2013,216(Pt 9):1597-1608.
    [87]Zhu Xin,Chen Dunxun,Hu Yi,et al.The micro RNA signature in response to nutrient restriction and refeeding in skeletal muscle of Chinese perch(Siniperca chuatsi)[J].Marine Biotechnology,2015,17(2):180-189.
    [88]Mazurais D,Darias M J,Gouillou-Coustans M F,et al.Dietary vitamin mix levels influence the ossification process in European sea bass(Dicentrarchus labrax)larvae[J].American Journal of Physiology.Regulatory,Integrative and Comparative Physiology,2007,294(2):R520-R527.
    [89]kugor S,kugor A,Todorˇcevic'M,et al.Exposure to lipopolysaccharide induces immune genes in cultured preadipocytes of Atlantic salmon[J].Fish&shellfish immunology,2010,29(5):817-824.
    [90]Marandel L,Lepais O,Arbenoits E,et al.Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout(Oncorhynchus mykiss)by nutritional status and dietary carbohydrates[J].Scientific Reports,2016,6:32187.
    [91]Rees W D,Hay S M,Brown D S,et al.Maternal protein deficiency causes hypermethylation of DNA in the livers of rat fetuses[J].Journal of Nutrition,2000,130(7):1821-1826.
    [92]Burdge G C,Lillycrop K A.Fatty acids and epigenetics[J].Current Opinion in Clinical Nutrition and Metabolic Care,2014,17(2):156-161.
    [93]Sargent J R,Bell M V,Bell J G,et al.Origins and functions of n-3 polyunsaturated fatty acids in marine organisms[M].Champaign:Ceve G and Paltauf F,1995:248-259.
    [94]Pickova J,Kiessling A,Pettersson A,et al.Fatty acid and carotenoid composition of eggs from two nonanadromous Atlantic salmon stocks of cultured and wild origin[J].Fish Physiology and Biochemistry,1999,21(2):147-156.
    [95]Cruz-Garcia L,Sánchez-Gurmaches J,Bouraoui L,et al.Changes in adipocyte cell size,gene expression of lipid metabolism markers,and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream(Sparus aurata L.)[J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology,2011,158(4):391-399.
    [96]Zakeri M,Kochanian P,Marammazi J G,et al.Effects of dietary n-3 HUFA concentrations on spawning performance and fatty acids composition of broodstock,eggs and larvae in yellowfin sea bream,Acanthopagrus latus[J].Aquaculture,2011,310(3-4):388-394.
    [97]Niculescu M D,Lupu D S,Craciunescu C N.Perinatal manipulation ofα-linolenic acid intake induces epigenetic changes in maternal and offspring livers[J].The FASEB Journal,2013,27(1):350-358.
    [98]Benatti P,Peluso G,Nicolai R,et al.Polyunsaturated fatty acids:biochemical,nutritional and epigenetic properties[J].Journal of the American College of Nutrition,2004,23(4):281-302.
    [99]Seierstad S L,Svindland A,Larsen S,et al.Development of intimal thickening of coronary arteries over the lifetime of Atlantic salmon,Salmo salar L.,fed different lipid sources[J].Journal of Fish Diseases,2008,31(6):401-413.
    [100]Xing Jinyi,Kang Li,Jiang Yunliang.Effect of dietary betaine supplementation on lipogenesis gene expression and Cp G methylation of lipoprotein lipase gene in broilers[J].Molecular Biology Reports,2011,38(3):1975-1981.
    [101]Xing Jinyi,Jiang Yunliang.Effect of dietary betaine supplementation on m RNA level of lipogenesis genes and on promoter Cp G methylation of fatty acid synthase(FAS)gene in laying hens[J].African Journal of Biotechnology,2012,11(24):6633-6640.
    [102]Mc Ghee K E,Bell A M.Paternal care in a fish:epigenetics and fitness enhancing effects on offspring anxiety[J].Proceedings of the Royal Society B:Biological Sciences,2014,281(1794):20141146.
    [103]Mizukami T,Kanai Y,Fujisawa M,et al.Five azacytidine,a DNA methyltransferase inhibitor,specifically inhibits testicular cord formation and Sertoli cell differentiation in vitro[J].Molecular Reproduction&Development,2008,75(6):1002-1010.
    [104]Matsumoto Y,Buemio A,Chu R,et al.Epigenetic control of gonadal aromatase(cyp19a1)in temperature-dependent sex determination of red-eared slider turtles[J].PLo S One,2013,8(6):e63599.
    [105]Merchant-Larios H,Díaz-Hernández V.Environmental sex determination mechanisms in reptiles[J].Sexual Development,2013,7(1-3):95-103.
    [106]Xiao Jun,Song Can,Liu Shaojun,et al.DNA methylation analysis of allotetraploid hybrids of red crucian carp(Carassius auratus red var.)and common carp(Cyprinus carpio L.)[J].PLo S One,2013,8(2):e56409.
    [107]王智诚,周晓旭,王昊泽,等.长链非编码RNA及其在斑马鱼中的研究进展[J].大连海洋大学学报,2017,32(2):248-254.
    [108]Sadhu N,Sharma S R K,Joseph S,et al.Chronic stress due to high stocking density in open sea cage farming induces variation in biochemical and immunological functions in Asian seabass(Lates calcarifer,Bloch)[J].Fish Physiology and Biochemistry,2014,40(4):1105-1113.
    [109]Xie Jun,Liu Bo,Zhou Qunlan,et al.Effects of anthraquinone extract from rhubarb Rheum officinale Bail on the crowding stress response and growth of common carp Cyprinus carpio var.Jian[J].Aquaculture,2008,281(1-4):5-11.
    [110]Costas B,Arag2o C,Mancera J M,et al.High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis(Kaup 1858)juveniles[J].Aquaculture Research,2008,39(1):1-9.
    [111]Caipang C M A,Brinchmann M F,Berg I,et al.Changes in selected stress and immune-related genes in Atlantic cod,Gadus morhua,following overcrowding[J].Aquaculture Research,2008,39(14):1533-1540.
    [112]Gornati R,Papis E,Rimoldi S,et al.Rearing density influences the expression of stress-related genes in sea bass(Dicentrarchus labrax,L.)[J].Gene,2004,341:111-118.
    [113]Aksakal E,Ekinci D,Erdoˇgan O,et al.Increasing stocking density causes inhibition of metabolic-antioxidant enzymes and elevates m RNA levels of heat shock protein 70 in rainbow trout[J].Livestock Science,2011,141(1):69-75.
    [114]Salas-Leiton E,Anguis V,Martín-Antonio B,et al.Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole(Solea senegalensis):potential effects on the immune response[J].Fish&Shellfish Immunology,2010,28(2):296-302.
    [115]Bouligand J,Ghervan C,Tello J A,et al.Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation[J].New England Journal of Medicine,2009,360(26):2742-2748.
    [116]Alvarado S G,Lenkov K,Williams B,et al.Social crowding during development causes changes in Gn RH1 DNA methylation[J].PLo S One,2015,10(10):e0142043.
    [117]Rebl A,Zebunke M,Borchel A,et al.Microarray-predicted marker genes and molecular pathways indicating crowding stress in rainbow trout(Oncorhynchus mykiss)[J].Aquaculture,2017,473:355-365.
    [118]Zhang Tieyuan,Hellstrom I C,Bagot R C,et al.Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus[J].Journal of Neuroscience,2010,30(39):13130-13137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700