PIK-75 promotes homology-directed DNA repair
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PIK-75 promotes homology-directed DNA repair
  • 作者:Guoling ; Li ; Xianwei ; Zhang ; Hao ; Ou ; Haoqiang ; Wang ; Dewu ; Liu ; Huaqiang ; Yang ; Zhenfang ; Wu
  • 英文作者:Guoling Li;Xianwei Zhang;Hao Ou;Haoqiang Wang;Dewu Liu;Huaqiang Yang;Zhenfang Wu;College of Animal Science, South China Agricultural University;
  • 中文刊名:YCXB
  • 英文刊名:遗传学报(英文版)
  • 机构:College of Animal Science, South China Agricultural University;
  • 出版日期:2019-03-20
  • 出版单位:Journal of Genetics and Genomics
  • 年:2019
  • 期:v.46
  • 基金:supported by grants from Guangdong Science and Technology Department (2017B020201009);; the National Natural Science Foundation of China (31772555);; the National Science and Technology Major Project for Breeding of New Transgenic Organisms (2016ZX08006002)
  • 语种:英文;
  • 页:YCXB201903004
  • 页数:4
  • CN:03
  • ISSN:11-5450/R
  • 分类号:37-40
摘要
<正>Homology-directed repair (HDR) is one of two major DNA repair pathways to mend the double-strand breaks (DSBs) formed in the genome (Liang et al., 1998; Pardo et al., 2009). Although less efficient compared with another DNA repair pathway, nonhomologous end joining (NHEJ), HDR is a type of precise repair to restore DNA damage and sustain genomic stability (Pardo et al., 2009; Ceccaldi
        
引文
Bhargava, R., Onyango, D.O., Stark, J.M., 2016. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 32, 566-575.
    Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W., Leal, J.F., 2008. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 8,187-198.
    Ceccaldi, R., Rondinelli, B., D'Andrea, A.D., 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52-64.
    Chen, F., Pruett-Miller, S.M., Huang, Y.,Gjoka, M., Duda, K., Taunton, J.,Collingwood, T.N., Frodin, M., Davis, G.D., 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8,753-755.
    Chu, V.T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K., Kuhn, R., 2015.Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543-548.
    Devkota, S., 2018. The road less traveled:strategies to enhance the frequency of homology-directed repair(HDR)for increased efficiency of CRISPR/Casmediated transgenesis. BMB Rep. 51, 437-443.
    Gaj, T., Gersbach, C.A., Barbas 3rd, C.F., 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397-405.
    Jayathilaka, K., Sheridan, S.D., Bold, T.D., Bochenska, K., Logan, H L.,Weichselbaum, R.R., Bishop, D.K., Connell, P.P., 2008. A chemical compound that stimulates the human homologous recombination protein RAD51. Proc.Natl. Acad. Sci. U. S. A. 105,15848-15853.
    Kendall, J.D., Rewcastle, G.W., Frederick, R., Mawson, C., Denny, W.A., Marshall, E.S.,Baguley, B.C., Chaussade, C., Jackson, S.P., Shepherd, P.R., 2007. Synthesis, biological evaluation and molecular modelling of sulfonohydrazides as selective PI3K p110alpha inhibitors. Bioorg. Med. Chem. 15, 7677-7687.
    Knight, Z.A., Gonzalez, B., Feldman, M.E., Zunder, E.R., Goldenberg, D.D.,Williams, O.,Loewith, R.,Stokoe, D.,Balla, A., Toth, B.,Balla, T., Weiss, W.A.,Williams, R.L., Shokat, K.M., 2006. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125, 733-747.
    Li, G., Zhang, X.,Zhong, C., Mo, J., Quan, R., Yang, J., Liu, D., Li, Z., Yang, H., Wu, Z.,2017. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci. Rep. 7, 8943.
    Liang, F., Han, M., Romanienko, P.J., Jasin, M., 1998. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl.Acad. Sci. U. S. A. 95, 5172-5177.
    Lieber, M.R., Ma, Y., Pannicke, U., Schwarz, K., 2003. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol. 4, 712-720.
    Lin, S., Staahl, B.T., Alla, R.K., Doudna, J.A., 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife3, e04766.
    Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E.,Church, G.M., 2013. RNA-guided human genome engineering via Cas9. Science339, 823-826.
    Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., Ploegh, H.L.,2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538-542.
    Pardo, B., Gomez-Gonzalez, B., Aguilera, A., 2009. DNA repair in mammalian cells:DNA double-strand break repair:how to fix a broken relationship. Cell. Mol.Life Sci. 66, 1039-1056.
    Robert, F., Barbeau,M., Ethier, S., Dostie, J., Pelletier, J., 2015. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 7,93.
    Rothkamm, K., Kruger, I., Thompson, L.H., Lobrich, M., 2003. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol.23, 5706-5715.
    Srivastava, M., Nambiar,M., Sharma, S., Karki, S.S., Goldsmith, G.,Hegde, M.,Kumar, S., Pandey, M., Singh, R.K., Ray, P., Natarajan, R., Kelkar,M., De, A.,Choudhary, B.,Raghavan, S.C., 2012. An inhibitor of nonhomologous endjoining abrogates double-strand break repair and impedes cancer progression.Cell 151, 1474-1487.
    Storici, F., Snipe, J.R., Chan, G.K., Gordenin, D.A., Resnick, M.A., 2006. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol. Cell. Biol,26, 7645-7657.
    Thomas, D., Powell, J.A., Vergez, F., Segal, D.H., Nguyen, N.Y., Baker, A., Teh, T.C.,Barry, E.F., Sarry, J.E., Lee, E.M., Nero, T.L., Jabbour, A.M., Pomilio, G.,Green, B.D., Manenti, S., Glaser, S.P., Parker, M.W., Lopez, A.F., Ekert, P.G.,Lock, R.B., Huang, D.C., Nilsson, S.K., Recher,C., Wei, A.H., Guthridge, M.A.,2013. Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription. Blood 122, 738-748.
    Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., Jaenisch, R.,2013. One-step generation of mice carying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918.
    Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., Li, J., 2013. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13,659-662.
    Yang, D., Scavuzzo, M.A., Chmielowiec, J., Sharp, R., Bajic, A., Borowiak, M., 2016.Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci. Rep. 6, 21264.
    Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., Jaenisch, R., 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering. Cell 154,1370-1379.
    Yoshimi, K., Kunihiro, Y., Kaneko, T., Nagahora, H., Voigt, B., Mashimo, T., 2016.ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat. Commun. 7,10431.
    Yu, C., Liu, Y., Ma, T., Liu, K., Xu, S., Zhang, Y., Liu, H., La Russa, M., Xie, M., Ding, S.,Qi, L.S., 2015. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16,142-147.
    Zhang, X., Li, Z., Yang, H., Liu, D., Cai, G., Li,G.,Mo, G., Wang, D., Zhong, C., Wang, H.,Sun, Y., Shi, J., Zheng, E., Meng, F., Zhang, M., He, X., Zhou, R., Zhang, J.,Huang, M., Zhang, R., Li, N., Fan, M., Yang, J., Wu, Z., 2018. Novel transgenic pigs with enhanced growth and reduced environmental impact. eLife 7, e34286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700