动力锂离子电池模块散热结构仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation research of heat dissipation structure for automotive lithium-ion battery packs
  • 作者:程昀 ; 李劼 ; 贾明 ; 汤依伟 ; 宋文锋 ; 张治安 ; 张凯
  • 英文作者:CHENG Yun;LI Jie;JIA Ming;TANG Yi-wei;SONG Wen-feng;ZHANG Zhi-an;ZHANG Kai;School of Metallurgy and Environment, Central South University;Engineering Research Center of High Performance Battery Materials and Devices in Shenzhen,Research Institute of Central South University in Shenzhen;
  • 关键词:锂离子电池模块 ; 散热结构 ; 仿真 ; 冷却
  • 英文关键词:lithium-ion battery pack;;heat dissipation structure;;simulation;;cooling
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:中南大学冶金与环境学院;中南大学深圳研究院深圳高性能电池材料与器件工程研究中心;
  • 出版日期:2015-06-15
  • 出版单位:中国有色金属学报
  • 年:2015
  • 期:v.25;No.195
  • 基金:国家自然科学基金资助项目(51204211);; 中国博士后科学基金资助项目(2012M521543);; 高等学校博士学科点专项科研基金资助项目(20120162120089);; 中南大学博士研究生自主探索创新项目(2015zzts033)
  • 语种:中文;
  • 页:ZYXZ201506024
  • 页数:10
  • CN:06
  • ISSN:43-1238/TG
  • 分类号:205-214
摘要
针对目前动力锂离子电池模块散热困难的问题,以12串10 A·h磷酸铁锂动力电池为研究对象,基于COMSOL MULTIPHYSICS平台建立其三维热仿真模型,并应用红外成像技术进行验证;定量分析不同工况下空气强制对流冷却和冷却板冷却对电池模块散热性能的影响。结果表明:空气强制对流冷却降低电池温度的能力有限,且造成电池模块温度均匀性变差。对流换热系数从5 W/(m2·K)变化至100 W/(m2·K)进行5C放电时,电池模块中心温度仅降低0.2 K,电池温差达到10 K;冷却板冷却具有平衡电池模块温度场的作用,其降温效果和温度均匀性均优于空气冷却时的。5C放电时,电池模块最高温度为318.91 K,最低温度为317.19 K;空气强制对流冷却时,增加冷却板厚度和外部散热翅片的数量都能够降低电池模块温度和均匀性,但在自然冷却条件下该变化不明显。
        Due to the heat dissipation problem of power lithium-ion battery packs, 12 series-10A·h lithium iron phosphate battery packs were taken as the research object. A three dimensional thermal simulation model for lithium ion battery packs was established based on the finite element commercial software COMSOL MULTIPHYSICS and validated by infrared imaging technology to analyze the influence of the air forced convection cooling and cold plate cooling on the heat dissipation of battery packs. The result shows that with the convection heat transfer coefficient increasing from 5 W/(m2·K) to 100 W/(m2·K), the center temperature of packs reduces only 0.2 K, but the temperature difference reaches 10 K. It can be concluded that the ability about lowering temperature of forced convection cooling is limited, and the forced convection cooling aggravates the temperature uniformity of packs. The maximum and minimum temperatures of battery pack with 5C discharge rate are 318.91 and 317.19 K, respectively, which is superior to forced convection cooling. It can be concluded that the cold plate cooling can balance the pack temperature. Increasing the thickness of cold plate and the number of external cooling fins can reduce the temperature and temperature uniformity of battery packs, but it is not obvious under natural convection cooling.
引文
[1]KARDEN E,PLOUMEN S,FRICKE B,MILLER T,SNYDER K.Energy storage devices for future hybrid electric vehicles[J].Journal of Power Sources,2007,168(1):2-11.
    [2]胡国荣,肖政伟,杜柯,彭忠东,邓新荣.高密度锂离子电池正极复合材料Li Fe PO4/C[J].中国有色金属学报,2007,17(12):2040-2045.HU Guo-rong,XIAO Zheng-wei,DU Ke,PENG Zhong-dong,DENG Xin-rong.High density Li Fe PO4/C composite cathode material for lithium ion batteries[J].The Chinese Journal of Nonferrous Metals,2007,17(12):2040-2045.
    [3]柯昌春,李劼,张治安,赖延清.碳纳米管作导电剂对Li Fe PO4锂离子电池性能的影响[J].中国有色金属学报,2011,42(5):1202-1208.KE Chang-chun,LI Jie,ZHANG Zhi-an,LAI Yan-qing.Effect of CNTs as conductive agent on performance of Li Fe PO4lithium-ion battery[J].The Chinese Journal of Nonferrous Metals,2011,42(5):1202-1208.
    [4]WANG Q,PING P,ZHAO X,CHU G,SUN J,CHEN C.Thermal runaway caused fire and explosion of lithium ion battery[J].Journal of Power Sources,2012,208(1):210-224.
    [5]李文成,卢世刚.C/Li Fe PO4动力蓄电池的热行为[J].中国有色金属学报,2012,22(4):1156-1162.LI Wen-cheng,LU Shi-gang.Thermal behavior of C/Li Fe PO4power secondary battery[J].The Chinese Journal of Nonferrous Metals,2012,22(4):1156-1162.
    [6]汤依伟,贾明,程昀,张凯,张红亮,李劼.基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布[J].物理学报,2013,62(15):15820101-15820110.TANG Yi-wei,JIA Ming,CHENG Yun,ZHANG Kai,ZHANG Hong-liang,LI Jie.Estimation of temperature distribution of the polymer lithium ion power battery based on the coupling relationship between electrochemistry and heat[J].Acta Physica Sinica,2013,62(15):15820101-15820110.
    [7]杨东,席陈彬,王凇旸,胡建华,杨彪,孙耀杰.磷酸铁锂电池的热效应研究[J].化学学报,2011,69(17):1987-1990.YANG Dong,XI Chen-bin,WANG Song-yang,HU Jian-hua,YANG Biao,SUN Yao-jie.Study on the thermal effect of Li Fe PO4 lithium ion battery[J].Acta Chimica Sinica,2011,69(17):1987-1990.
    [8]KIM G H,SMITH K,IRELAND J,PESARAN A.Fail-safe design for large capacity lithium-ion battery systems[J].Journal of Power Sources,2012,210:243-253.
    [9]YAZAWA K,SOLBREKKEN G L,BAR-COHEN A.Thermoelectric-powered convective cooling of microprocessors advanced packaging[J].IEEE Transactions on Advanced Packaging,2005,28(2):231-239.
    [10]WU M S,HUNG Y H,WANG Y Y,WAN C C.Heat dissipation behavior of the nickel/metal hydride battery[J].Journal of The Electrochemical Society,2000,147(3):930-935.
    [11]BERNARDI D,PAWLIKOWSKI E,NEWMAN J.A general energy balance for battery systems[J].Journal of the Electrochemical Society,1985,132(1):5-12.
    [12]CHEN Y,EVANS J W.Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application[J].Journal of the Electrochemical Society,1993,140(7):1833-1838.
    [13]CHEN S C,WAN C C,WANG Y Y.Thermal analysis of lithium-ion batteries[J].Journal of Power Sources,2005,140(1):111-124.
    [14]KWON K H,SHIN C B,KANG T H,KIM C S.A Two-dimensional modeling of a lithium-polymer battery[J].Journal of Power Sources,2006,163(1):151-157.
    [15]KIM U S,SHIN C B,KIM C S.Effect of electrode configuration on the thermal behavior of a lithium-polymer battery[J].Journal of Power Sources,2008,180(2):909-916.
    [16]KIM U S,SHIN C B,KIM C S.Modeling for the scale-up of a lithium-ion polymer battery[J].Journal of Power Sources,2009,189(1):841-846.
    [17]KIM U S,YI J,SHIN C B,HAN T,PARK S.Modelling the thermal behaviour of a lithium-ion battery during charge[J].Journal of Power Sources,2011,196(11):5115-5121.
    [18]KIM G H,SMITH K,LEE K J,SANTHANAGOPALAN S,PESARAN A.Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J].Journal of The Electrochemical Society,2011,158(8):955-969.
    [19]KEYSER M,SMITH K.Battery thermal modeling and testing[EB/OB].[2012-09-10].http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/50916.pdf.
    [20]GUO G,LONG B,CHENG B,ZHOU S,XU P,CAO B.Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J].Journal of Power Sources,2010,195(8):2393-2398.
    [21]ONDA K,KAMEYAMA H,HANAMOTO T,ITO K.Experimental study on heat generation behavior of small lithium-ion secondary batteries[J].Journal of the Electrochemical Society,2003,150(3):285-291.
    [22]YE Y,SHI Y,CAI N,LEE J,HE X.Electro-thermal modeling and experimental validation for lithium ion battery[J].Journal of Power Sources,2012,199:227-238.
    [23]PESARAN A,VLAHINOS A,BHARATHAN D.Electrothermal analysis of lithium ion batteries[EB/OB].[2012-09-10].http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/39503.pdf.
    [24]WU M S,LIU K H,WANG Y Y,WAN C C.Heat dissipation design for lithium-ion batteries[J].Journal of Power Sources,2002,109(1):160-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700