1980—2015年清水河流域水系连通变化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Change of River Connectivity in Qingshui River Basin from 1980 to 2015
  • 作者:王坤 ; 许超 ; 王文杰 ; 吴秀芹
  • 英文作者:WANG Kun;XU Chao;WANG Wenjie;WU Xiuqin;School of Soil and Water Conservation,Beijing Forestry University;Key Laboratory of Soil and Water Conservation of State Forestry Administration,Beijing Forestry University;Chinese Research Academy of Environmental Sciences;
  • 关键词:阻碍物 ; 连通性 ; 土地破碎度 ; 汇水区 ; 清水河
  • 英文关键词:barrier;;integrated connectivity;;land-use fragmentation;;catchment;;Qingshui River
  • 中文刊名:BJDZ
  • 英文刊名:Acta Scientiarum Naturalium Universitatis Pekinensis
  • 机构:北京林业大学水土保持学院;北京林业大学水土保持国家林业局重点实验室;中国环境科学研究院;
  • 出版日期:2019-07-20
  • 出版单位:北京大学学报(自然科学版)
  • 年:2019
  • 期:v.55;No.294
  • 基金:国家重点研发计划(2016YFC0503002)资助
  • 语种:中文;
  • 页:BJDZ201904018
  • 页数:8
  • CN:04
  • ISSN:11-2442/N
  • 分类号:154-161
摘要
为揭示城市化发展情景下区域水系连通的变化规律,以永定河支流清水河流域为对象,集成遥感影像、统计资料及土地利用等数据,运用河流连通性综合评价体系,将基于障碍物累积影响的河流纵向连通性及基于土地破碎度的河流横向连通性相结合,系统性地研究1980—2015年清水河流域的水系连通性变化。根据专家知识并结合清水河实际情况,可将清水河河道阻碍物分为水库、水闸、漫水桥和河道堆积物4种类型。1980—2015年阻碍物的数量持续增长,2000年比1980年增加10.4%,2015年增加23.9%。1980—2015年,清水河流域纵向连通性整体上呈升高趋势,纵向连通性差的汇水区比例由1980年的40%逐渐降低至2015年的14%。纵向连通性升高的区域集中在流域东部及中部,西南部部分汇水区连通性加剧恶化。河流横向连通性整体上变化不明显,其中流域西部有所下降,东部有所好转。1980—2015年清水河流域综合连通性整体上呈升高趋势,综合连通性差的汇水区占比在1980,2000和2015年分别为26%,17%和11%。综合连通性升高的区域集中在流域东部,而流域西南部部分区域连通性始终较差。研究结果揭示了京津冀城市化进程中流域连通性的变化规律,可为区域防洪减灾和河流生态修复提供参考。
        In order to reveal the changing rules of regional water system connectivity under the development of urbanization, this paper takes Qingshui River, a tributary of the Yongding River, as an object, integrates remote sensing imagery, statistical data, and land use data, uses the comprehensive evaluation system for river connectivity, combining the longitudinal connectivity of rivers based on the cumulative effects of barriers and the lateral connectivity of rivers based on the effects of catchment fragmentation, and systematically studies the connectivity changes of water systems in the Qingshui River Basin from 1980 to 2015. The results of the study indicate that based on expert knowledge and combined with the actual situation of the Qingshui River, the barriers of the Qingshui River can be divided into four types: reservoirs, sluice gates, diffuse bridges, and river accumulations. During the study period, the number of barriers continues to increase. In 2000, the number of barriers increases by 10.4% in comparison with 1980 and increases by 23.9% in 2015. From 1980 to 2015, the longitudinal connectivity of the Qingshui River Basin as a whole shows an upward trend. The proportion of the watershed with poor vertical connectivity gradually decreases from 40% in 1980 to 14% in 2015. The areas with increased vertical connectivity are mainly concentrated in the eastern and central parts of the basin, and the connectivity in the southwestern part of the catchment area deteriorates. The overall change in river lateral connectivity is not significant, with the western part of the basin decreasing and the eastern part having improved.From 1980 to 2015, the comprehensive connectivity of the Qingshui River Basin shows an overall upward trend.The proportion of catchments with poor comprehensive connectivity is from 26% in 1980, 17% in 2000 and 17% in2015, respectively. The areas with increased connectivity are mainly concentrated in the east of the basin, while the connectivity in some areas in the southwest of the basin is always poor. The study reveals the law of connectivity changes in the basin during the urbanization process in Beijing, Tianjin and Hebei, and can provide a scientific reference for regional flood prevention and disaster reduction and river ecological rehabilitation.
引文
[1]Nadeau T L,Rains C M.Hydrological connectivity between headwater streams and downstream waters:how science can inform policy.Journal of the American Water Resources Association,2007,43(1):118-133
    [2]Pringle C M.What is hydrologic connectivity and why is it ecologically important?.Hydrological Processes,2003,17(13):2685-2689
    [3]徐光来,许有鹏,王柳艳.基于水流阻力与图论的河网连通性评价.水科学进展,2012,23(6):776-781
    [4]Chessman B C.Biological traits predict shifts in geographical ranges of freshwater invertebrates during climatic warming and drying.Journal of Biogeography,2012,39(5):957-969
    [5]Herron N,Wilson C.A water balance approach to assessing the hydrologic buffering potential of an alluvial fan.Water Resources Research,2001,37(2):341-352
    [6]Freeman M C,Pringle C M,Jackson C R.Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales.Jawra Journal of the American Water Resources Association,2007,43(1):5-14
    [7]张欣,王红旗,李华.公路建设对生态环境水系连通性的影响.环境科学与技术,2013,36(12):406-411
    [8]王中根,李宗礼,刘昌明,等.河湖水系连通的理论探讨.自然资源学报,2011,26(3):523-529
    [9]张欧阳,熊文,丁洪亮.长江流域水系连通特征及其影响因素分析.人民长江,2010,41(1):1-5
    [10]Hooke J M.Human impacts on fluvial systems in the Mediterranean region.Geomorphology,2006,79(3):311-335
    [11]夏军,高扬,左其亭,等.河湖水系连通特征及其利弊.地理科学进展,2012,31(1):26-31
    [12]Ward J V,Stanford J A.The four-dimensional nature of lotic ecosystems.Journal of the North American Benthological Society,1989,8(1):2-8
    [13]丰华丽,王超,李剑超.河流生态与环境用水研究进展.河海大学学报(自然科学版),2002,30(3):19-23
    [14]Thompson C J,Fryirs K,Croke J.The disconnected sediment conveyor belt:patterns of longitudinal and lateral erosion and deposition during a catastrophic flood in the lockyer valley,south east queensland,Australia.River Research and Application,2016,32(4):540-551
    [15]夏继红,林俊强,姚莉,等.河岸带的边缘结构特征与边缘效应.河海大学学报(自然科学版),2010,38(2):215-229
    [16]Cote D,Kehler D G,Bourne C,et al.A new measure of longitudinal connectivity for stream networks.Landscape Ecology,2009,24(1):101-113
    [17]Favaro C,Moore J W.Fish assemblages and barriers in an urban stream network.Freshwater Science,2015,34(3):991-1005
    [18]孙鹏,王琳,王晋,等.闸坝对河流栖息地连通性的影响研究.中国农村水利水电,2016(2):53-56
    [19]赵进勇,董哲仁,孙东亚,等.基于图论的河道-滩区系统连通性评价方法.水利学报,2011,42(5):537-543
    [20]Stevaux J C,Corradini F A,Aquino S.Connectivity processes and riparian vegetation of the upper ParanáRiver,Brazil.Journal of South American Earth Sciences,2013,46:113-121
    [21]李原园,郦建强,李宗礼,等.河湖水系连通研究的若干问题与挑战.资源科学,2011,33(3):386-391
    [22]Rivers-Moore N,Mantel S,Ramulifo P,et al.Adisconnectivity index for improving choices in managing protected areas for rivers.Aquatic Conservation:Marine and Freshwater Ecosystems,2016,26:29-38
    [23]吕红霞,顾斌杰,张雅利,等.永定河支流清水河水资源利用存在问题及对策.北京水务,2015(1):17-20
    [24]北京市第一次水务普查工作领导小组办公室.水利工程普查成果.北京:中国水利水电出版社,2013:31-36
    [25]北京市第一次水务普查工作领导小组办公室.河湖普查成果.北京:中国水利水电出版社,2013:31-36
    [26]北京市门头沟区水利志编辑委员会.门头沟区水利志.北京:北京市门头沟区水利志编辑委员会,1994
    [27]Young W J,Hillman T J.The Murray River-to the Darling River junction//Young W J.Rivers as Ecological Systems:The Murray-Darling Basin.Canberra:Murray-Darling Basin Commission,2001:101-118
    [28]Stein J L,Stein J A,Nix H A.Spatial analysis of anthropogenic river disturbance at regional and continental scales:identifying the wild rivers of Australia.Landscape and Urban Planning,2002,60:1-25
    [29]宋瑞莲.门头沟区清洁小流域建设与山区河道的水环境保护.北京水务,2009(1):54-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700