挤压镁合金薄壁方管的耐撞性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crashworthiness of extruded magnesium thin-walled square tubes
  • 作者:李志刚 ; 杨海峰 ; 张照生 ; 孙野 ; 韩郅通 ; 韦济飞
  • 英文作者:Zhi-gang LI;Hai-feng YANG;Zhao-sheng ZHANG;Ye SUN;Zhi-tong HAN;Ji-fei WEI;School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University;School of Mechanical Engineering, Beijing Institute of Technology;Jilin Jihua Construction and Maintenance Limited Company;
  • 关键词:镁合金方管 ; 耐撞性能 ; 长度/宽度比 ; 应变率 ; 诱导特征
  • 英文关键词:magnesium square tube;;crashworthiness;;length/width ratio;;strain rate;;induced feature
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:北京交通大学机械与电子控制工程学院;北京理工大学机械与车辆学院;吉林吉化建修有限公司;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(2017JBM041)supported by the Fundamental Research Funds for the Central Universities,China;; Project(51505024)supported by the National Natural Science Foundation of China;; Project supported by the Foundation of Zhejiang Key Laboratory of Automobile Safety Technology of China
  • 语种:英文;
  • 页:ZYSY201906010
  • 页数:10
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:112-121
摘要
对不同长度的完整AZ31B镁合金薄壁方管和A6063铝合金薄壁方管以及具有诱导特征的薄壁管进行不同应变率的轴向压缩试验研究。研究发现,压缩过程中镁合金薄壁管局部屈曲,进而断裂,其中在断裂阶段出现3种耐撞性能断裂模式,分别是水平断裂、斜向断裂和螺旋断裂。相比于铝合金方管,镁合金薄壁管的吸能效果较差。在上述研究基础上,进一步分析长宽比、应变率和诱导特征对薄壁管耐撞性能的影响。结果表明,随着长宽比从1增加到4,镁合金薄壁管的最大压缩载荷和整体吸能比以幂函数的规律减小,而铝合金薄壁管则基本保持不变。随着压缩速率从5×10~(-5)增加到10m/s,镁合金薄壁管的主要耐撞性能参数以指数形式增加,而铝合金薄壁管则变化很小。此外,本文作者引入的圆孔和缝的诱导特征未明显提高镁合金薄壁管的吸能效果,因此,后期需要在薄壁管不同位置设计更多种类和尺寸的诱导特征来提高镁合金薄壁管的吸能比。
        Axial compression tests were conducted on AZ31 B magnesium and A6063 aluminum thin-walled square tubes with varied lengths and induced features at different compression rates. In compression, the magnesium tubes exhibited a "local buckling and fracture" mode, with three fracture patterns, i.e. "horizontal", "double-oblique", and "spiral" fractures. In general, the magnesium tube showed an inferior crashworthiness to the aluminum square tube. In addition, the effects of L/W ratio, strain rate and induced features on the crashworthiness of thin-walled square tubes were investigated. With an increase in the L/W ratio(L and W represent the tube length and width, respectively) from 1 to 4, the maximal force and global specific energy absorption decreased in a power-law trend for the magnesium tubes,while they remained approximately constant for the aluminum tubes. Furthermore, as the compression rate increased from 5×10~(-5) to 10 m/s, the primary crashworthiness parameters of the magnesium tubes increased in an approximately exponential manner,while for the aluminum tubes,they changed slightly. Finally,the involved induced features were proven to be not an effective method to improve the specific energy absorption of magnesium tubes, thus, more trigger types,locations,and sizes will be evaluated in future to improve the energy-absorption ability.
引文
[1]LI Z G,ZHANG D N,PENG C L,MA C S,ZHANG J H,HU Z M,ZHANG J Z,ZHAO Y N.The effect of local dents on the residual ultimate strength of 2024-T3 aluminum alloy plate used in aircraft under axial tension tests[J].Engineering Failure Analysis,2015,48:21-29.
    [2]LI Z G,FENG R X,WANG Y,WANG L S.Experimental study on the effect of dents induced by impact on the fatigue life of 2024-T3aluminum alloy plate[J].Engineering Structures,2017,137:236-244.
    [3]SU M N,YOUNG B,GARDNER L.The continuous strength method for the design of aluminium alloy structural elements[J].Engineering Structures,2016,122:338-348.
    [4]GUO L L,FUJITA F.Effect of deformation mode,dynamic recrystallization and twinning on rolling texture evolution of AZ31magnesium alloys[J].Transactions of Nonferrous Metals Society of China,2018,28(6):1094-1102.
    [5]WANG F F,WENG M,ZHANG H W,HAN Z Q.Effects of underaging treatment on microstructure and mechanical properties of squeeze-cast Al-Zn-Mg-Cu alloy[J].Transactions of Nonferrous Metals Society of China,2018,28(10):1920-1927.
    [6]ZHANG X W,SU H,YU T X.Energy absorption of an axially crushed square tube with a buckling initiator[J].International Journal of Impact Engineering,2009,36(3):402-417.
    [7]XU F,TIAN X,LI G.Experimental study on crashworthiness of functionally graded thickness thin-walled tubular structures[J].Experimental Mechanics,2015,55(7):1339-1352.
    [8]LU G,YU T X.Energy absorption of structures and materials[M].Cambrige:Woodhead Publishing,2003.
    [9]LIU M,ZHANG L L,WANG P J,CHANG Y C.Buckling behaviors of section aluminum alloy columns under axial compression[J].Engineering Structures,2015,95:127-137.
    [10]LANGSETH M,HOPPERSTAD O S.Local buckling of square thin-walled aluminium extrusions[J].Thin-walled Structures,1997,27(1):117-126.
    [11]GUILLOW S R,LU G,GRZEBIETA R H.Quasi-static axial compression of thin-walled circular aluminium tubes[J].International Journal of Mechanical Sciences,2001,43(9):2103-2123.
    [12]HOSSEINI-TEHRANI P,PIRMOHAMMAD S.Collapse study of thin-walled polygonal section columns subjected to oblique loads[J].Journal of Automobile Engineering,2007,221(7):801-810.
    [13]MIYAZAKI M,NEGISHI H.Deformation and energy absorption of aluminum square tubes with dynamic axial compressive load[J].Journal of Japan Institute of Light Metals,2002,52(7):308-312.
    [14]QIAO J S,CHEN H Y,CHEN J H.Investigation of axial anti-collapse behavior of square aluminum alloy tube 6063[J].Journal of Lanzhou University of Technology,2006,32(2):14-17.(in Chinese)
    [15]ZHANG X,WEN Z Z,ZHANG H.Axial crushing and optimal design of square tubes with graded thickness[J].Thin-walled Structures,2014,84:263-274.
    [16]SIMHACHALAM B,SRINIVAS K,RAO C L.Energy absorption characteristics of aluminium alloy AA7xxx and AA6061 tubes subjected to static and dynamic axial load[J].International Journal of Crashworthiness,2014,19(2):139-152.
    [17]ZOU X,GAO G J,DONG H P,XIE S C,CHEN G,TAN T.Crashworthiness analysis and structural optimisation of multi-cell square tubes under axial and oblique loads[J].International Journal of Crashworthiness,2017,22(2):129-147.
    [18]MARZBANRAD J,KESHAVARZI A,ABOUTALEBI F H.Influence of elastic and plastic support on the energy absorption of the extruded aluminium tube using ductile failure criterion[J].International Journal of Crashworthiness,2014,19(2):172-181.
    [19]HOOPUTRA H,GESE H,DELL H,WERNER H.A comprehensive failure model for crashworthiness simulation of aluminium extrusions[J].International Journal of Crashworthiness,2004,9(5):449-464.
    [20]LI Z G,YANG H F,HU X W,WEI J F,HAN Z T.Experimental study on the crush behavior and energy-absorption ability of circular magnesium thin-walled tubes and the comparison with aluminum tubes[J].Engineering Structures,2018,164:1-13.
    [21]BEGGS P D,SONG W,EASTON M.Failure modes during uniaxial deformation of magnesium alloy AZ31B tubes[J].International Journal of Mechanical Sciences,2010,52(12):1634-1645.
    [22]YOON J,LEE Y,HUH H.Investigation of deformation and collapse mechanism for magnesium tube in axial crushing test[J].Journal of Mechanical Science and Technology,2013,27(10):2917-2921.
    [23]SAMER F,TARLOCHAN F,SAMAKA H,KHALID K S.Improvement of energy absorption of thin walled hexagonal tube made of magnesium alloy by using trigger mechanisms[J].International Journal of Research in Engineering and Technology,2013,2(10):173-180.
    [24]ZHU F,CHOU C C,YANG K H,CHEN X M,WAGNER D,BILKHU S.Application of AM60B magnesium alloy material model to structural component crush analysis[J].International Journal of Vehicle Safety,2012,6(2):178-190.
    [25]D?RUM C,HOPPERSTAD O S,LADEMO O G,LANGSETH M.An experimental study on the energy absorption capacity of thin-walled castings[J].International Journal of Impact Engineering,2006,32(5):702-724.
    [26]D?RUM C,HOPPERSTAD O S,LADEMO O G,LANGSETH M.Energy absorption capacity for thin-walled AM60 castings using a shear-bolt principle[J].Computers&Structures,2007,85(1):89-101.
    [27]STEGLICH D,TIAN X,BOHLEN J,RIEKEHR S,KASHAEV N,KAINER K U,HUBER N.Experimental and numerical crushing analyses of thin-walled magnesium profiles[J].International Journal of Crashworthiness,2015,20(2):177-190.
    [28]WU Z B,GUI L J,FAN Z J.Axial compression tests and energy absorption characteristics of extruded magnesium alloy AZ31Brectangular tubes[J].Engineering Mechanics,2015,32(10):183-190.(in Chinese).
    [29]WAGNER D A,LOGAN S,WANG K,SKSZEK T.FEA predictions and test results from magnesium beams in bending and axial compression[C]//Detroit:SAE 2010 World Congress&Exhibition,2010.
    [30]ROSSITER J,INAL K,MISHRA R.Numerical modeling of the failure of magnesium tubes under compressive loading[J].Journal of Engineering Materials and Technology,2012,134(2):169-184.
    [31]HALLQUIST J O.LS-DYNA keyword user’s manual[M].Livemore:Livermore Software and Technology Corporation,2007:299-800.
    [32]DAVIES C H J.The effect of twinning on strain rate sensitivity during the compression of extruded magnesium alloy AZ31[J].Materials Science Forum,2007,539:1723-1728.
    [33]LIVESCU V,CADY C M,CERRETA E K,HENRIE B L,GRAY GT.The high strain rate deformation behavior of high purity magnesium and AZ31B magnesium alloy[C]//LUO A A,NEELAMEGGHAM N,BEALS R.Magnesium Technology.Warrendale,PA:TMS,2006:153-158.
    [34]SONG W Q,BEGGS P,EASTON M.Compressive strain-rate sensitivity of magnesium-aluminum die casting alloys[J].Materials&Design,2009,30(3):642-648.
    [35]LINDHOLM U,BESSEY R,SMITH G.Effect of strain rate on yield strength,tensile strength and elongation of three aluminum alloys[J].Materials Science and Engineering A,1971,6(1):119-133.
    [36]MANES A,PERONI L,SCAPIN M,GIGLIO M.Analysis of strain rate behavior of an Al 6061 T6 alloy[J].Procedia Engineering,2011,10:3477-3482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700