速度脉冲地震和结构偏心耦合效应对结构影响系数的修正
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MODIFICATION OF STRUCTURAL INFLUENCE FACTORS FOR THE COUPLING EFFECT OF PULSE-LIKE GROUND MOTION AND STRUCTURAL ECCENTRICITY
  • 作者:补国斌 ; 周靖 ; 王菁菁
  • 英文作者:BU Guo-bin;ZHOU Jing;WANG Jing-jing;College of Civil Engineering, Hunan University of Technology;College of Civil Engineering and Mechanics, Xiangtan University;School of Civil Engineering and Transportation, South China University of Technology;
  • 关键词:结构影响系数 ; 强度偏心 ; 速度脉冲地震 ; 抗震 ; 延性
  • 英文关键词:structural influence factor;;strength eccentricity;;pulse-like ground motion;;seismic;;ductility
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:湖南工业大学土木工程学院;湘潭大学土木工程与力学学院;华南理工大学土木与交通学院;
  • 出版日期:2019-08-13
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51708205,51608190);; 湖南省自然科学基金项目(2017JJ3058,2018JJ2401)
  • 语种:中文;
  • 页:GCLX201908023
  • 页数:9
  • CN:08
  • ISSN:11-2595/O3
  • 分类号:220-228
摘要
研究结构偏心和速度脉冲强震双重耦合不利对钢筋混凝土框架体系结构影响系数的修正措施。通过理论推导建立该耦合不利效应对结构影响系数的修正方法,给出修正系数计算流程。以最不利的强度偏心框架为对象,分别选取10条速度脉冲型和非速度脉冲型地震加速度记录,开展非线性动力时程分析,量化速度脉冲地震效应、偏心率、结构延性和楼层数对修正系数的影响规律。基于数值分析结果,建立修正系数的拟合关系式。结果表明,速度脉冲地震工况下的修正系数明显大于非速度脉冲工况。修正系数随偏心率增大,先线性增大后非线性急剧增大。偏心较小时,延性对修正系数的影响较小;偏心较大时,修正系数随延性的增大而减小。楼层数对修正系数无明显影响。拟合的修正系数关系式可为抗震设计中综合考虑速度脉冲地震和结构偏心的不利影响提供参考。
        The modification of the structural influence factors considering the adverse effects from both structural eccentricity and pulse-like earthquake effect was investigated for reinforced concrete frame systems.The modification method was established theoretically and the calculating process was described. Ten pulse-like and ten non-pulse-like ground motions were employed in the nonlinear dynamic time history analysis on frames with the most unfavorable strength eccentricity. The relationships between the modification factor and the pulse-like effect, eccentricity, ductility and story number were studied quantitatively. Based on the numerical results, a fitting formula was established to estimate the modification factor. It showed that the modification factors for pulse-like cases were clearly greater than those for non-pulse-like cases. In addition, the modification factor increased linearly first and subsequently nonlinearly with an increasing eccentricity. The ductility had a small effect on systems with lower eccentricities, while for systems with higher eccentricities the modification factor decreased as the ductility increased. The influence of story number was not significant. Furthermore, the fitted formula can be applied as a reference in seismic design to comprehensively consider the disadvantages of the pulse-like earthquakes and structural eccentricity.
引文
[1]Zerbin M,Aprile A,Beyer K,et al.Ductility reduction factor formulations for seismic design of RC wall and frame structures[J].Engineering Structures,2019,178(1):102―115.
    [2]NBCC.The national building code of Canada[S].Ottawa:National Research Council,2010.
    [3]IBC.International building code[S].Virginia,USA:International Code Council,2012.
    [4]Eurocode 8.Design of structures for earthquake resistance[S].CEN,Brussels,Belgium:European Committee for Standardizations,2004.
    [5]TJ11―78,工业与民用建筑抗震设计规范[S].北京:中国建筑工业出版社,1979.TJ11―78,Code for seismic design of industrial and civil buildings[S].Beijing:China Architecture and Building Press,1979.(in Chinese)
    [6]CECS160,建筑工程抗震性态设计通则[S].北京:中国计划出版社,2004.CECS160,Guidelines for seismic design of buildings[S].Beijing:China Planning Press,2004.(in Chinese)
    [7]叶列平,方鄂华.关于建筑结构地震作用计算方法的讨论[J].建筑结构,2009,39(2):1―7.Ye Lieping,Fang Ehua.Discussion on calculation method of earthquake force for building structures[J].Building Structure,2009,39(2):1―7.(in Chinese)
    [8]Dutta S C,Roy R.Seismic demand of low-rise multistory systems with general asymmetry[J].Journal of Engineering Mechanics,2012,138(1):1―11.
    [9]孙玉平,叶列平,赵世春,等.日本钢筋混凝土结构大震抗震验算的保有耐力计算方法[J].建筑结构学报,2011,32(9):65―74.Sun Yuping,Ye Lieping,Zhao Shichun,et al.Seismic design methodology for reinforced concrete structures under strong earthquake in Japan[J].Journal of Building Structures,2011,32(9):65―74.(in Chinese)
    [10]Tena-Colunga A,Mena-Hernández U,Pérez-Rocha L,et al.Updated seismic design guidelines for model building code of Mexico[J].Earthquake Spectra,2009,25(4):869―898.
    [11]Li C,Kunnath S,Zhai C.Influence of early-arriving pulse-Like ground motions on ductility demands of single-degree-of-Freedom systems[J].Journal of Earthquake Engineering,2018:1―24.doi:10.1080/13632469.2018.1466744.
    [12]Zhai C,Li C,Kunnath S,et al.An efficient algorithm for identifying pulse-like ground motions based on significant velocity half-cycles[J].Earthquake Engineering&Structural Dynamics,2018,47(3):757―771.
    [13]贾俊峰,杜修力,韩强.近断层地震动特征及其对工程结构影响的研究进展[J].建筑结构学报,2015,36(1):1―12.Jia Junfeng,Du Xiuli,Han Qiang.A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J].Journal of Building Structures,2015,36(1):1―12.(in Chinese)
    [14]谢俊举,李小军,温增平.近断层速度大脉冲对反应谱的放大作用[J].工程力学,2017,34(8):194―211.Xie Junju,Li Xiaojun,Wen Zengping.Seismic behavior analysis of prestressed concrete frame structure under near-fault pulsed ground motions[J].Engineering Mechanics,2017,34(8):194―211.(in Chinese)
    [15]补国斌,蔡健,周靖,等.速度脉冲地震作用下偏心结构的弹塑性抗震研究[J].工程力学,2015,32(2):131―138.Bu Guobin,Cai Jian,Zhou Jing,et al.Elastoplastic aseismic research on eccentric structures subjected to velocity pulse-like ground motion[J].Engineering Mechanics,2015,32(2):131―138.(in Chinese)
    [16]曲哲,师骁.汶川地震和鲁甸地震的脉冲型地震动比较研究[J].工程力学,2016,33(8):150―157.Qu Zhe,Shi Xiao.Comparative study on the pulse-like ground motions in the Wenchuan and the Ludian earthquakes[J].Engineering Mechanics,2016,33(8):150―157.(in Chinese)
    [17]Sucuo?lu H,Akkar S.Basic earthquake engineering[M].Switzerland:Spring International Publishing,2014.
    [18]Zhou J,Bu G,Wang H,et al.Modification of ductility reduction factor for vertically irregular structures subjected to pulse-like ground motions[J].Advances in Structural Engineering,2013,16(4):641―652.
    [19]GB50011―2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB50011―2010,Code for seismic design of buildings[S].Beijing:China Architecture and Building Press,2010.(in Chinese)
    [20]Li K N.CANNY program for three-dimensional nonlinear static and dynamic structural analysis[CP].http://members.shaw.ca/CannyNAS/,2018-11-18.
    [21]Bu G,Cai J,Zhou J,et al.Seismic demand for eccentric wall structures subjected to velocity pulse-like ground motions[J].Journal of Vibroengineering,2014,16(4):1661―1671.
    [22]Shome N.Probabilistic seismic demand analysis of nonlinear structures[R].USA:Stanford University,2014.
    [23]Baker J W.Quantitative classification of near-fault ground motions using wavelet analysis[J].Bulletin of the Seismological Society of America,2007,97(5):1486―1501.
    [24]Bradley B A,Pettinga D,Baker J W,et al.Guidance on the utilization of earthquake-induced ground motion simulations in engineering practice[J].Earthquake Spectra,2017,33(3):809―835.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700