支护结构对地下厂房围岩附加抗能的作用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Additional Energy Resistant Effects of Supporting Structure to Surrounding Rock in Underground Powerhouse
  • 作者:刘登禹 ; 张建海 ; 周钟 ; 廖成刚 ; 郑进修 ; 罗滔
  • 英文作者:LIU Dengyu;ZHANG Jianhai;ZHOU Zhong;LIAO Chenggang;ZHENG Jinxiu;LUO Tao;State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University;Power China Chengdu Engineering Corporation Limited;Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University;
  • 关键词:地下厂房 ; 支护结构 ; 附加抗能 ; 能量支护指数
  • 英文关键词:underground powerhouse;;supporting structure;;additional anti-energy;;energy supporting index
  • 中文刊名:FSJS
  • 英文刊名:Journal of Water Resources and Architectural Engineering
  • 机构:四川大学水利水电学院水力学与山区河流开发保护国家重点实验室;中国电建集团成都勘测设计研究院有限公司;西京学院陕西省混凝土结构安全与耐久性重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:水利与建筑工程学报
  • 年:2019
  • 期:v.17;No.84
  • 语种:中文;
  • 页:FSJS201902021
  • 页数:10
  • CN:02
  • ISSN:61-1404/TV
  • 分类号:112-120+224
摘要
为更合理地解释支护结构的作用机理,量化锚杆(索)的加固效果,从能量分析角度开展研究,首先明确附加抗能是支护结构对围岩贡献的能量补给,提出了支护结构的能量补给理论分析方法及其抗能计算公式;进而依据国内20个水电工程地下厂房实测资料,对主厂房边墙的支护参数展开归纳统计;最后基于附加抗能提出了能量支护指数的概念。结果表明:支护结构对围岩附加抗能的贡献主要包括锚杆(索)抗拉强度提供的抗能、锚杆(索)与围岩接触面粘结作用提供的抗能、围岩裂隙灌浆粘结作用提供的抗能;锚杆(索)附加抗能、围岩强度应力比、主厂房开挖跨度三者的关系可通过4个经验公式加以概括;锚杆(索)的能量支护指数分布在1.0附近,该特性可以为工程设计提供参考依据。
        To more reasonably explain the reinforcement mechanism of supporting structure to surrounding rock, and quantify the reinforced effect of bolts, conducting a research from a perspective of energy analysis is a new way. Firstly, it is defined that the additional resistant energy is an energy supply that supporting structure contributes to surrounding rock, and a theoretical analysis method of energy replenishment for supporting structure is proposed together with its calculation formulas of resistant energy. Then, the side wall's supporting parameters of 20 hydropower underground powerhouses in China are summarized. Finally, a concept of energy supporting index is put forward based on the additional resistant energy. The research result indicates that the additional resistant energy is composed of 3 parts: resistant energy provided by tensile strength of bolts, resistant energy provided by bonding effect of interface between bolts and surrounding rock, and resistant energy provided by bonding effect of fissure grouting in surrounding rock. Relationship between the additional resistant energy provided by bolts, the strength-stress ratio of surrounding rock, and the excavation span of main powerhouse is fitted by 4 empirical formulas. All energy supporting indexes of 20 projects are distributed in the vicinity of 1.0, this feature can provide reference for support design.
引文
[1] 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [2] 谢和平,许唯临,刘超,等.地下水利工程战略构想及关键技术展望[J].岩石力学与工程学报,2018,37(4):781-791.
    [3] 刘泉声,雷广峰,彭星新.深部裂隙岩体锚固机制研究进展与思考[J].岩石力学与工程学报,2016,35(2):312-332.
    [4] 葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1988,10(1):8-19.
    [5] Kilic A,Yasar E,Celik A G.Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J].Tunnelling and Underground Space Technology,2002,17(4):355-362.
    [6] 侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-342.
    [7] Kim S H,Pelizza S,Kim J S.A study of strength parameters in the reinforced ground by rock bolts[J].Tunnelling and Underground Space Technology,2006,21(3):378-379.
    [8] 徐前卫,尤春安,朱合华.预应力锚索的三维数值模拟及其锚固机理分析[J].地下空间与工程学报,2005,1(2):214-218,222.
    [9] 唐旭海,张建海,张恩宝,等.溪洛渡电站左岸地下厂房洞室群围岩稳定性研究[J].云南水力发电,2007,23(1):33-37.
    [10] 杨慧敏.预应力锚杆(索)在节理岩体中的支护机理研究及应用[D].长沙:中南大学,2010.
    [11] Gu Shuancheng,Zhou Pan,Huang Ronbin.Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement[C]//International Conference on Energy Equipment Science and Engineering in 2017/IOP Conference Series:Earth and Environmental Science,Beijing:IOP Publishing,2018,128:012029.
    [12] 杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
    [13] 刘天为,何江达,徐文杰.大理岩三轴压缩破坏的能量特征分析[J].岩土工程学报,2013,35(2):395-400.
    [14] 陈妙峰,唐德高,高培正,等.锚杆粘结应力与滑移量的试验研究[J].防护工程,2003,25(2):63-65.
    [15] 胡钧涛,王太恒,龚玮,等.钢绞线与水泥浆体粘结-滑移性能试验研究[J].石河子农学院学报,1990(3):1-9.
    [16] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社出版社,2010.
    [17] 中华人民共和国国家质量监督检验检疫总局.预应力混凝土用钢绞线:GB/T 5224—2014[S].北京:中国标准出版社,2014.
    [18] 中华人民共和国水利部.水工预应力锚固设计规范:SL 212—2012[S].北京:中国水利水电出版社,2012.
    [19] 中华人民共和国住房和城乡建设部.岩土锚杆与喷射混凝土支护工程技术规范:GB 50086—2015[S].北京:中国计划出版社,2015.
    [20] 唐旭海,张建海,蒋峰,等.关于锚固支护设计的统计方法研究[J].四川大学学报(工程科学版),2007,39(S):176-181.
    [21] 张肖,张建海,蒋峰,等.地下厂房锚索支护设计的统计研究[J].四川水利,2008,29(4):78-80.
    [22] 王秀全,罗维薇.黄金坪水电站地下厂房开挖支护优化设计[J].四川水力发电,2016,35(2):51-54.
    [23] 樊熠玮,李霖.猴子岩水电站地下厂房顶拱开挖支护设计[J].甘肃水利水电技术,2013,49(4):62-64.
    [24] 邓加林,赵志勇,杨宜文.小湾水电站地下厂房围岩支护设计[J].云南水力发电,2007,23(4):55-58.
    [25] 刘一,魏映瑜.大岗山水电站地下厂房洞室群开挖支护设计[J].人民长江,2012,43(22):47-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700