铅修饰纳米多孔铂催化剂对甲酸氧化的电活性(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lead Modified Nanoporous Platinum Electro-Catalysts for Formic Acid Oxidation
  • 作者:张媛媛 ; 易清风 ; 左葛琨琨 ; 邹涛 ; 刘小平 ; 周秀林
  • 英文作者:Yuanyuan Zhang;Qingfeng Yi;Gekunkun Zuo;Tao Zou;Xiaoping Liu;Xiulin Zhou;School of Chemistry and Chemical Engineering, Hunan University of Science and Technology;
  • 关键词:甲酸氧化 ; 纳米多孔Pt ; 纳米多孔Pb-Pt ; 电化学震荡
  • 英文关键词:formic acid oxidation;;nanoporous Pt;;nanoporous Pb-Pt;;electrochemical oscillations
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:湖南科技大学化学化工学院;
  • 出版日期:2018-07-02 15:50
  • 出版单位:电化学
  • 年:2018
  • 期:v.24;No.107
  • 基金:supported by the National Natural Science Foundation of China (No. 21376070)
  • 语种:英文;
  • 页:DHXX201803009
  • 页数:9
  • CN:03
  • ISSN:35-1172/O6
  • 分类号:75-83
摘要
用合适金属修饰的铂催化剂能够显著增强其对甲酸氧化的电活性.本文以水热法制备了钛负载的纳米多孔铂电极(nanoPt/Ti),然后采用循环伏安法,通过扫描不同的周数(n),用适量的铅对nanoPt/Ti电极进行修饰,得到一种新型的铅修饰的纳米多孔铂电极(nano Pb_((n))-Pt/Ti).采用循环伏安(CV)、计时电流和计时电位法研究其对对甲酸氧化的电活性.CV结果显示nanoPt/Ti和nanoPb_((n))-Pt/Ti电极对甲酸氧化表现出较高的催化活性,并且nanoPb_((20))-Pt/Ti电极对甲酸氧化的起始电位为-0.06 V,相比nanoPt/Ti电极的起始电位(0.06 V),明显有所负移.此外,nanoPb_((20))-Pt/Ti电极的第一个氧化峰电流密度为12.7 mA·cm~(-2),远远大于nanoPt电极(4.4 mA·cm~(-2));计时电流显示在电位为0.1 V时,在0.5 mol·L~(-1)H_2SO_4+1 mol·L~(-1 )HCOOH溶液中,nanoPb_((20))-Pt/Ti电极达到稳定时的电流为8.09 mA·cm~(-2),是nanoPt电极的60倍,表明铅修饰的nanoPt/Ti对甲酸氧化的电活性急剧增加;在1.5mA、2 mA、2.2 mA和2.5 mA下的计时电位结果表明,nanoPb_((20))-Pt/Ti电极上甲酸氧化过程表现出显著的电化学振荡,且和nano Pt/Ti电极相比,振荡现象能持续更长的时间,说明nanoPb_((20))-Pt/Ti电极具有更强的表面抗毒化能力.
        Platinum(Pt)catalysts modified by other suitable metals significantly enhance their electrochemical activities for formic acid oxidation.In this work,a titanium-supported nanoporous network platinum(nano Pt/Ti)electrode was prepared using a hydrothermal method.The as-prepared nano Pt/Ti electrode was modified with a certain amount of lead by using cyclic voltammetry for different scan cycle numbers(n),namely,n=10,15,20 and 30,to synthesize the novel lead-modified nanoporous Pt(nano Pb_((n))-Pt/Ti)electrodes.Electro-oxidation of formic acid on these electrodes was studied with cyclic voltammetry(CV),chronoamperometry and chronopotentiometry in sulfuric acid solution.CV curves showed that both nano Pt/Ti and nano Pb_((n))-Pt/Ti electrodes displayed high electrocatalytic activities for formic acid oxidation,and the onset potential of formic acid oxidation on the nano Pb_((20))-Pt/Ti electrode was-0.06 V,which was more negative than that on the nano Pt/Ti electrode(0.06 V).In addition,the first oxidation peak current density on the nano Pb_((20))-Pt/Ti electrode was 12.7 mA·cm~(-2),which was far larger than that on the nano Pt electrode(4.4 mA·cm~(-2)).Chronoamperommetric data at 0.1 V in 0.5 mol·L~(-1 )H_2SO_4+1 mol·L~(-1 )HCOOH suggested that the nano Pb_((20))-Pt/Ti electrode exhibited the stable current density of 8.09 mA·cm~(-2 )which was 60 times higher than the nano Pt electrode,indicating the dramatic enhancement of electroactivity on the lead-modified nano Pt/Ti electrode for formic acid oxidation with comparison to the nano Pt/Ti electrode.Chronopotentiometric responses on the electrode at 1.5 mA,2 mA,2.2 mA and 2.5 mA in 0.5 mol·L~(-1 )H_2SO_4+1 mol·L~(-1)HCOOH revealed notable electrochemical oscillations which lasted longer time than those on the nano Pt/Ti electrode.It was demonstrated that the lead-modified nano Pb_((20))-Pt/Ti electrode presented the most significant enhancement on surface anti-poisoning ability.
引文
[1]Mert S O,Reis A.Exergoeconomic analysis of a direct formic acid fuel cell system[J].International Journal of Hydrogen Energy,2016,41(4):2981-2986.
    [2]Tsujiguchi T,Matsuoka F,Hokari Y,et al.Overpotential analysis of the direct formic acid fuel cell[J].Electrochimica Acta,2016,197:32-38.
    [3]Ren M J(任明军),Zou L L(邹亮亮),Chen J(陈举),et al.Electrocatalytic oxidation of formic acid on Pd/Ni heterostructured catalyst[J].Journal of Electrochemistry(电化学),2012,3(5):515-520.
    [4]Yang S D(杨苏东),Liang Y Y(梁彦瑜),Wen Z L(温祝亮),et al.Comparison of catalytic performance on different materials supported Pd catalysts for formic acid oxidation[J].Journal of Electrochemistry(电化学),2011,17(2):175-179.
    [5]Hong P,Luo F,Liao S J,et al.Effects of Pt/C,Pd/C and Pd Pt/C anode catalysts on the performance and stability of air breathing direct formic acid fuel cells[J].International Journal of Hydrogen Energy,2011,36(14):8518-8524.
    [6]Mohammada A M,El-Nagara G A,Al-Akraab I M,et al.Towards improving the catalytic activity and stability of platinum-based anodes in direct formic acid fuel cells[J].International Journal of Hydrogen Energy,2015,40(24):7808-7816.
    [7]Gralec B,Lewera A.Catalytic activity of unsupported Pd-Pt nanoalloys with low Pt content towards formic acid oxidation[J].Applied Catalysis B:Environmental,2016,192:304-310.
    [8]Ha S,Larsen R,Masel R I.Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J].Journal of Power Sources,2005,144(1):28-34.
    [9]Xu J(徐杰),Jiang D C(江道传),Mei D(梅东),et al.Recent progress in the mechanistic understanding of formic acid oxidation on Pt electrode[J].Journal of Electrochemistry(电化学),2014,20(4):333-342.
    [10]Yi Q F(易清风).Electrochemical oxidation of formic acid on novel titanium-supported nanoporous network platinum electrode[J].Journal of Chemical Industry&Engineering(化工学报),2007,58(2):446-451.
    [11]Li M C(李美超),Wang W Y(汪伍洋),Ma C A(马淳安).A simple method to improve electrocatalytic activity of Pt for formic acid oxidation[J].Chinese Journal of Catalysis(催化学报),2009,30(11):1073-1075.
    [12]Yu X,Pickup P G.Pb and Sb modified Pt/C catalysts for direct formic acid fuel cells[J].Electrochimica Acta,2010,55(24):7354-7361.
    [13]Yu X,Pickup P G.Effects of iron-tetrasulfophthalocyanine on the catalytic activities of Pt/C,Pt Ru/C,and Pd/Ccatalysts in a multi-anode direct formic acid fuel cell[J].Journal of Applied Electrochemistry,2010,40(4):799-807.
    [14]Zhang B W,Zhang Z C,Liao H G,et al.Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation[J].Nano Energy,2016,19:198-209.
    [15]Yu X,Pickup P G.Screening of Pd M and Pt M catalysts in a multi-anode direct formic acid fuel cell[J].Journal of Applied Electrochemistry,2011,41(5):589-597.
    [16]Alden L R,Han D K,Matsumoto F,et al.Intermetallic Pt Pb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors:Electrocatalytic oxidation of formic acid[J].Chemistry of Materials,2006,18(23):5591-5596.
    [17]Ghosh T,Matsumoto F,Mcinnis J,et al.Pt Pb nanoparticle electrocatalysts:Control of activity through synthetic methods[J].Journal of Nanoparticle Research,2009,11(4):965-980.
    [18]Zhou R(周蓉),Zhang H M(张红梅),Du Y K(杜玉扣),et al.Study on electrodeposition of Pt-Au bimetallic catalysts and their electrocatalytic oxidation for formic acid[J].Acta Chimica Sinica(化学学报),2011,69(13):1533-1539.
    [19]Tripkovic A V,Popovic K D,Stevanovic R M,et al.Activity of a Pt Bi alloy in the electrochemical oxidation of formic acid[J].Electrochemistry Communications,2006,8(9):1492-1498.
    [20]Zhang L J(张丽娟),Xia D G(夏定国),Wang Z Y(王振尧),et al.Intermetallic Pt Bi as methanol-tolerant catalysts for oxygen reduction[J].Acta Physico-Chimica Sinica(物理化学学报),2005,21(3):287-290.
    [21]Yu X W,Pickup P G.Carbon supported Pt Bi catalysts for direct formic acid fuel cells[J].Electrochimica Acta,2011,56(11):4037-4043.
    [22]Li H(李红),Jing L C(江琳才),Jiang X(蒋雄).Electrocatalytic oxidation of formaldehyde and formic acid on a Pt/Sbadelectrode[J].Journal of Electrochemistry(电化学),1995,1(1):56-63.
    [23]Casadorivera E,Gál Z,Angelo A C,et al.Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface[J].Chem Phys Chem,2003,4(2):193-199.
    [24]Ghosh T,Matsumoto F,Mcinnis J,et al.Pt Pb nanoparticle electrocatalysts:Control of activity through synthetic methods[J].Journal of Nanoparticle Research,2009,11(4):965-980.
    [25]Huang Y Y,Zheng S Y,Lin X J,et al.Microwave synthesis and electrochemical performance of a Pt Pb alloy catalyst for methanol and formic acid oxidation[J].Electrochimica Acta,2012,63:346-353.
    [26]Jana R,Subbarao U,Peter S C.Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol[J].Journal of Power Sources,2016,301:160-169.
    [27]Zhang X,Zhang B,Liu D Y,et al.One-pot synthesis of ternary alloy Cu Fe Pt nanoparticles anchored on reduced graphene oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions[J].Electrochimica Acta,2015,177:93-99.
    [28]An L,Yan H L,Li B,et al.Highly active N-Pt Te/reduced graphene oxide intermetallic catalyst for formic acid oxidation[J].Nano Energy,2015,15:24-32.
    [29]Bai Y C,Zhang W D,Chen C H,et al.Carbon nanotubessupported Pt Au-alloy nanoparticles for electro-oxidation of formic acid with remarkable activity[J].Journal of Alloys&Compounds,2011,509(3):1029-1034.
    [30]Sun Z P,Zhang X G,Liu R L,et al.A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation[J].Journal of Power Sources,2008,185(2):801-806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700