纳米SiO_2溶胶缓解油井水泥高温强度衰退的作用机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Working mechanism of nano-SiO_2 sol to alleviate the strength decline of oil well cement under high temperature
  • 作者:王成文 ; 陈新 ; 周伟 ; 王永洪 ; 薛毓铖 ; 罗发强
  • 英文作者:Wang Chengwen;Chen Xin;Zhou Wei;Wang Yonghong;Xue Yucheng;Luo Faqiang;Key Laboratory of Unconventional Oil & Gas Development//China University of Petroleum ;School of Petroleum Engineering, China University of Petroleum ;Department of Civil and Environmental Engineering, University of Alberta;Research Institute of Petroleum Engineering,Sinopec Northwest;
  • 关键词:纳米SiO_2溶胶 ; 高温 ; G级油井水泥 ; 水泥石 ; 抗压强度 ; 缓解强度衰退 ; 水化产物 ; 微观结构
  • 英文关键词:Nano-SiO2 sol;;High temperature;;Class Goil well cement;;Set cement;;Compressive strength;;Mitigation of strength retrogression;;Hydration product;;Microstructure
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:非常规油气开发教育部重点实验室·中国石油大学(华东);中国石油大学(华东)石油工程学院;加拿大阿尔伯塔大学土木与环境工程学院;中国石化西北油田分公司工程技术研究院;
  • 出版日期:2019-03-27 09:41
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.305
  • 基金:国家自然科学联合基金重点项目“超深井安全高效井筒工作液构建及调控方法基础研究”(编号:U1762212);; 国家自然科学基金项目“CCS咸水层封存中二氧化碳—硫酸盐—镁盐协同作用下油井水泥石的腐蚀机理”(编号:51704325);; 山东省自然科学基金项目“高温高密度水泥浆恒稳调控方法及其作用机理研究”(编号:ZR2017MEE056);; 长江学者和创新团队发展计划(编号:IRT_14R58)
  • 语种:中文;
  • 页:TRQG201903014
  • 页数:8
  • CN:03
  • ISSN:51-1179/TE
  • 分类号:78-85
摘要
油井水泥石强度衰退是高温固井所面临的主要难题之一,而添加纳米SiO_2能否缓解水泥石的高温强度衰退以及其作用机理是什么,还有待于验证和确认。为此,通过室内试验,基于X射线衍射仪、扫描电子显微镜和能谱仪分析水泥石的矿物组成、微观结构和水化产物的元素,测定了高温条件下(150℃/35 MPa)纳米SiO_2溶胶对G级油井水泥石抗压强度的影响及变化规律,据此研究纳米SiO_2溶胶在高温下对水泥水化产物的作用机理。研究结果表明:①纳米SiO_2溶胶可以提高G级油井水泥浆的稠度系数,对水泥浆的流变性会产生不利的影响;②在高温养护初期,纳米SiO_2溶胶会降低水泥石的抗压强度,但加入纳米SiO_2溶胶的水泥石的抗压强度不会随着养护时间的增加而产生明显的变化;③加入少量纳米SiO_2溶胶的G级油井水泥中的纳米SiO_2颗粒吸附在水泥矿物表面阻碍水化反应,能够缓解水泥水化产物的高温脱水变质,纳米SiO_2颗粒还可以提高水泥微观结构的致密性;④加入大量纳米SiO_2溶胶的G级油井水泥中的纳米SiO_2与氢氧化钙发生火山灰反应生成一种新型的、结构松散的薄片蜂窝状CSH产物,难以提供较高的抗压强度。结论认为,纳米SiO_2可以作为水泥添加剂以缓解油井水泥高温强度衰退,该研究成果为高温固井水泥浆体系的设计提供了一条新的思路。
        Strength decline of oil well set cement is one of the major challenges during well cementing under high temperature. Therefore, it is necessary to verify and confirm whether nano-SiO_2 can mitigate this problem and its working mechanism. In this paper, the mineral composition and microstructure of set cement and the elements of its hydration product were experimentally analyzed by using a X-ray diffractometer, a scanning electron microscope and an energy spectrometer. Then, the effect of nano-SiO_2 sol on the compressive strength of Class G oil well set cement and its change laws under high temperature(150 ℃/35 MPa) were investigated. Based on this, the working mechanism of nano-SiO_2 sol on the hydration product of cement under high temperature was studied. And the following research results were obtained. First, nano-SiO_2 sol can increase the consistency coefficient of Grade G oil well slurry and has an adverse impact on the rheological property of slurry. Second, nano-SiO_2 sol can decrease the compressive strength of set cement in the early stage of high temperature curing, but the compressive strength of the set cement with nano-SiO_2 sol will not change obviously as the curing goes.Third, if a small amount of nano-SiO_2 sol is added into Grade G oil well cement, nano-SiO_2 particles are adsorbed to the surface of cement minerals to hinder the hydration reaction, so it can mitigate the evaporation metamorphism of the hydration product of cement under high temperature. Besides, nano-SiO_2 particles can improve the micro-structural compactness of the cement. Fourth, if a large amount of nano-SiO_2 sol is added into Grade G oil well cement, pozzolanic reaction happens between nano-SiO_2 and calcium hydroxide, generating a new type of structurally loose honeycomb calcium silicate hydrate(CSH) product, which cannot provide higher compressive strength.In conclusion, nano-SiO_2, as cement additive, can mitigate the strength retrogression of oil well cement under high temperature. These research results provide a new idea for the design of a high-temperature cement slurry system.
引文
[1]Singh LP,Karade SR,Bhattacharyya SK,Yousuf M&Ahalawat S.Beneficial role of nanosilica in cement based materials——Areview[J].Construction and Building Materials,2013,47:1069-1077.
    [2]Heikal M,Ali AI,Ismail MN&Ibrahim S.Behavior of composite cement pastes containing silica nano-particles at elevated temperature[J].Construction and Building Materials,2014,70:339-350.
    [3]Bjornstrom J,Martinelli A,Matic A,Borjesson L&Panas I.Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement[J].Chemical Physics Letters,2004,392(1/3):242-248.
    [4]Pang Xueyu,Boul PJ&Jimenez WC.Nanosilicas as accelerators in oil well cementing at low temperatures[J].SPE Drill Completion,2014,29(1):98-105.
    [5]Saleh NJ,Ibrahim RI&Salman AD.Characterization of nano-silica prepared from local silica sand and its application in cement mortar using optimization technique[J].Advanced Powder Technology,2015,26(4):1123-1133.
    [6]Kim JJ,Rahman MK,Al-Majed AA&Taha MM.Nanosilica effects on composition and silicate polymerization in hardened cement paste cured under high temperature and pressure[J].Cement and Concrete Composites,2013,43:78-85.
    [7]Kim KM,Heo YS,Kang SP&Lee J.Effect of sodium silicate-and ethyl silicate-based nano-silica on pore structure of cement composites[J].Cement&Concrete Composites,2014,49:84-91.
    [8]徐迅,卢忠远.纳米二氧化硅对硅酸盐水泥水化硬化的影响[J].硅酸盐学报,2007,35(4):478-484.Xu Xun&Lu Zhongyuan.Effect of nano-silicon dioxide on hydration and hardening of portland cement[J].Journal of the Chinese Ceramic Society,2007,35(4):478-484.
    [9]Yu R,Spiesz P&Brouwers HJH.Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete(UHPC)with a low binder amount[J].Construction and Building Materials,2014,65:140-150.
    [10]孔德玉,杜祥飞,杨杨,Surendra P Shah.纳米二氧化硅团聚特性对水泥水化硬化性能的影响[J].硅酸盐学报,2012,40(11):1599-1606.Kong Deyu,Du Xiangfei,Yang Yang&Shah SP.Effect of nano-silica agglomeration on hydration and hardening of cement[J].Journal of the Chinese Ceramic Society,2012,40(11):1599-1606.
    [11]Haruehansapong S,Pulngern T&Chucheepsakul S.Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2[J].Construction and Building Materials,2014,50:471-477.
    [12]Zyganitidis I,Stefanidou M,Kalfagiannis N&Logothetidis S.Nanomechanical characterization of cement-based pastes enriched with SiO2 nanoparticles[J].Materials Science and Engineering:B,2011,176(19):1580-1584.
    [13]路阳,卢军太,何小芳,曹新鑫,卿培良.纳米二氧化硅的制备及其对水泥水化影响的研究进展[J].硅酸盐通报,2013,32(7):1335-1339.Lu Yang,Lu Juntai,He Xiaofang,Cao Xinxin&Qing Peiliang.Research progress on preparation and effect on cement hydration of nano silica[J].Bulletin of the Chinese Ceramic Society,2013,32(7):1335-1339.
    [14]Khaloo A,Mobini MH&Hosseini P.Influence of different types of nano-SiO2 particles on properties of high-performance concrete[J].Construction and Building Materials,2016,113:188-201.
    [15]Nelson EB&Guillot D.Well cementing[M].Amsterdam:Schlumberger,2006:319-341.
    [16]杨智光,崔海清,肖志兴.深井高温条件下油井水泥强度变化规律研究[J].石油学报,2008,29(3):435-437.Yang Zhiguang,Cui Haiqing&Xiao Zhixing.Change of cement stone strength in the deep high temperature oil well[J].Acta Petrolei Sinica,2008,29(3):435-437.
    [17]Murtaza M,Rahman MK,Al-Majed AA&Samad A.Mechanical,rheological and microstructural properties of saudi type G cement slurry with silica flour used in saudi oil field under HTHP conditions[C]//SPE Saudi Arabia section Annual Technical Symposium and Exhibition,19-22 May 2013,Al-Khobar,Saudi Arabia.DOI:https://doi.org/10.2118/168101-MS.
    [18]Ye Qing,Zhang Zenan,Kong Deyu&Chen Rongshen.Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume[J].Construction and Building Materials,2007,21(3):539-545.
    [19]Senff L,Hotza D,Repette WL,Ferreira VM&Labrincha JA.Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design[J].Construction and Building Materials,2010,24(8):1432-1437.
    [20]Jo BW,Kim CH,Tae GH&Park JB.Characteristics of cement mortar with nano-SiO2 particles[J].Construction and Building Materials,2007,21(6):1351-1355.
    [21]Nili M&Ehsani A.Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume[J].Materials&Design,2015,75:174-183.
    [22]American Petroleum Institute.Recommended practice for testing well cements:API RP 10B-2/ISO 10426-2[S].Washington DC:API,2013.
    [23]国家发展和改革委员会.SY/T5504.3-2008油井水泥外加剂评价方法第3部分:减阻剂[S].北京:石油工业出版社,2008.National Development and Reform Commission.SY/T 5504.3-2008 Evaluation method for well cements additives——Part 3:Dispersant[S].Beijing:Petroleum Industry Press,2008.
    [24]Senff L,Hotza D,Lucas S,Ferreira VM&Labrincha JA.Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars[J].Material Science and Engineering A,2012,532:354-361.
    [25]Senff L,Labrincha JA,Ferreira VM,Hotza D&Repette WL.Effect of nano-silica on rheology and fresh properties of cement pastes and mortars[J].Construction and Building Materials,2009,23(7):2487-2491.
    [26]Berra M,Carassiti F,Mangiardi T,Paolini AE&Sebastiani M.Effects of nanosilica addition on workability and compressive strength of Portland cement pastes[J].Construction and Building Materials,2012,35:666-675.
    [27]Hong SY&Glasser F.Phase relations in the CaO-SiO2-H2Osystem to 200℃at saturated steam pressure[J].Cement and Concrete Research,2004,34(9):1529-1534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700