TiB_2/ZrB_2/SiC复合功能材料的微观结构与力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical properties and microstructure of TiB_2/ZrB_2/SiC composite functional materials composites
  • 作者:李彬 ; 尤惠媛 ; 杨海军 ; 常家东 ; 王传彬
  • 英文作者:LI Bin;YOU Hui-yuan;YANG Hai-jun;CHANG Jia-dong;WANG Chuan-bin;Department of Mechanical Engineering, Luoyang Institute of Science and Technology;State Key Lab of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology;
  • 关键词:放电等离子烧结 ; 硼化钛 ; 硼化锆 ; 碳化硅 ; 增韧特性
  • 英文关键词:spark plasma sintering;;titanium diboride;;zirconium diboride;;silicon carbide;;toughening performance
  • 中文刊名:FMGC
  • 英文刊名:Materials Science and Engineering of Powder Metallurgy
  • 机构:洛阳理工学院机械工程系;武汉理工大学材料复合新技术国家重点实验室;
  • 出版日期:2014-10-15
  • 出版单位:粉末冶金材料科学与工程
  • 年:2014
  • 期:v.19;No.92
  • 基金:国家自然科学基金资助项目(51475222);; 河南省科技创新杰出青年资助项目(144100510017);; 河南省科技攻关资助项目(132102210514);; 河南省高等学校青年骨干教师资助项目(2013GGJS-186)
  • 语种:中文;
  • 页:FMGC201405024
  • 页数:7
  • CN:05
  • ISSN:43-1448/TF
  • 分类号:152-158
摘要
采用放电等离子烧结工艺,制备TiB2/ZrB2/SiC复合功能材料。用X射线衍射仪和场发射扫描电镜分析观察复合材料的物相组成及微观形貌。并测试复合材料的抗弯强度、断裂韧性及硬度。结果表明:两次球磨后的TiB2/ZrB2/SiC粉体粒度较小(2~4μm),且分布较均匀,几乎没有团聚现象。烧结后的复合功能材料中有(TixZry)B2固溶体相生成。当加入ZrB2的体积分数为30%时,生成的(TixZry)B2固溶体在复合材料中起到了很好的晶粒细化与界面融合作用,所以TZS30复合陶瓷材料比TZS0复合陶瓷材料的抗弯强度和断裂韧性分别提高了119.8%和98.9%。利用TiB2/ZrB2/SiC复合陶瓷材料在高温摩擦作用下与氧的化学反应,可以实现自润滑。
        TiB2/ZrB2/SiC functional composite materials were fabricated by the spark plasma sintering technology. Phase composition and microstructure of the composite were analyzed by XRD and SEM. The bend strength, fracture toughness and hardness were detected. The results show that the particle size of TiB2/ZrB2/SiC powder is 2~4 μm after double milling refinement, which makes the size and distribution uniform, and almost without reunion phenomenon. Moreover,the new phases of(TixZry) B2 solid solution are produced in the sintered functional composite. When the volume fraction of ZrB2 is 30%, the generated(TixZry) B2 solid solution plays a very important role in grain refinement and interface fusion. The bending strength and fracture toughness of TZS30 composite ceramic materials are much higher than TZS0,which are increased by 119.8% and 98.9%, respectively. Meanwhile, the self-lubricating of TiB2/ZrB2/SiC ceramic materials can be realized by the friction chemical reaction with oxygen under high-temperature.
引文
[1]TIAN Wub-ian,KITA Hideki,HYUGA Hideki,et al.Reaction joining of SiC ceramics using TiB2-based composites[J].Journal of The European Ceramic Society,2010,30(15):3203-3208.
    [2]ZHOU Li-juan,LI Hong-bo,ZHENG Yong-ting.Effects of annealing treatment on the microstructure and mechanical properties of the AlN-SiC-TiB2 ceramic composites prepared by SHS-HIP[J].Journal of Alloys and Compounds,2013,552:499-503.
    [3]SCATTEIA Luigi,ALFANO Davide,MONTEVERDE Frederic,et al.Effect of the Machining Method on the Catalycity and Emissivity of ZrB2 and ZrB2-HfB2-Based Ceramics[J].Journal of the American Ceramic Society,2008,91(5):1461-1468.
    [4]MONTEVERDE F.The addition of SiC particles into a MoSi2-doped ZrB2 matrix:Effects on densification,microstructure and thermo-physical properties[J].Materials Chemistry and Physics,2009,113(2/3):626-633.
    [5]LI Bin,DENG Jian-xin,LI You-sheng.Oxidation behavior and mechanical properties degradation of hot-pressed Al2O3/ZrB2/ZrO2 ceramic composites[J].International Journal of Refractory Metals and Hard Materials,2009,27(4):747-753.
    [6]ZHANG S C,HILMAS G E.,FAHRENHOLTZ W G.Pressureless sintering of ZrB2-SiC ceramics[J].Journal of the American Ceramic Society,2008,91(1):26-32.
    [7]PARTHASARATHY T A,RAPP R A,OPEKA M,et al.A model for the oxidation of ZrB2,HfB2 and TiB2[J].Acta Materialia,2007,55(17):5999-6010.
    [8]SCITI D,MONTEVERDE F,GUICCIARDI S,et al.Microstructure and mechanical properties of ZrB2-MoSi2ceramic composites produced by different sintering techniques[J].Materials Science and Engineering:A,2006,434(1/2):303-309.
    [9]RASOULI S,TAHERI N E.In situ preparation of Al2O3-SiC nanocomposites via sol-gel method followed by pressureless sintering[J].Journal of Alloys and Compounds,2010,496(1/2):678-682.
    [10]HOU Xin-mei,CHOU Kuo-chih.Corrosion resistance of AlNSiC-TiB2 composite in air[J].Composites Science and Technology,2009,69(15/16):2527-2531.
    [11]RAN S,VAN der B O,VLEUGELS J.In situ platelet-toughened TiB2-SiC composites prepared by reactive pulsed electric current sintering[J].Scripta Materialia,2011,64(12):1145-1148.
    [12]郭峰,李历坚.TiB2基陶瓷材料的研发进展与展望[J].粉末冶金材料科学与工程,2009,14(5):285-289.GUO Feng,LI Li-jian.Research-development progress and prospect on TiB2 based ceramic materials[J].Materials Science and Engineering of Powder Metallurgy,2009,14(5):285-289.
    [13]GILORMINI P,MONTHEILLET F.Deformation of an inclusion in a viscous matrix and induced stress concentrations[J].Journal of the Mechanics and Physics of Solids,1986,34(2):97-123.
    [14]RADEV D D,KLISSURSKI D.Mechanochemical synthesis and SHS of diborides of titanium and zirconium[J].Journal of Materials Synthesis and Processing,2001,9(3):131-136.
    [15]YIN Jie,HUANG Zheng-ren,LIU Xue-jian,et al.Mechanical properties and in-situ toughening mechanism of pressurelessly densified ZrB2-TiB2 ceramic composites[J].Materials Science and Engineering A,2013,565(0):414-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700