约束高强混凝土三轴受压本构模型分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the stress-to-axial strain relationship of confined high-strength concrete under triaxial compression
  • 作者:党伟 ; 申世飞
  • 英文作者:DANG Wei;SHEN Shifei;Xi'an Aeronautical University;Xi'an Thermal Power Research Institute Co.,Ltd.;
  • 关键词:高强混凝土 ; 三轴受压 ; 本构模型 ; 对比分析
  • 英文关键词:high-strength concrete;;triaxial compression;;constitutive model;;contrastive analysis
  • 中文刊名:SJDC
  • 英文刊名:World Earthquake Engineering
  • 机构:西安航空学院;西安热工研究院有限公司;
  • 出版日期:2016-06-15
  • 出版单位:世界地震工程
  • 年:2016
  • 期:v.32
  • 语种:中文;
  • 页:SJDC201602015
  • 页数:7
  • CN:02
  • ISSN:23-1195/P
  • 分类号:102-108
摘要
侧向约束能够提高高强混凝土抗压强度,有效改善延性,合理本构模型的表述对结构非线性分析意义显著。基于281组三轴受压约束混凝土构件试验结果,建立了峰值应力和峰值应变与侧向约束的计算模型,并与现有Attard and Setunge模型、Candappa模型和Lu and Hsu模型、Jiang and Teng模型进行对比,评估模型的准确性;进而,采用Popovice模型,建立了适用于普通和高强混凝土的本构模型。研究表明:建立峰值应力和峰值应变模型计算值与试验值较为接近,基于其建立的高强混凝土三轴受压本构模型曲线与试验曲线吻合较好,为高强混凝土三轴受压约束构件的非线性分析提供理论依据。
        It is well established that the use of lateral confinement can significantly enhance the strength and ductility of high-strength concrete( HSC),and reasonable selection of constitutive model of HSC has largely effect on nonlinear analysis of structure elements. This paper presents a study on the behavior and modeling of the stress-strain curves of confined HSC under triaxial compression by collecting 281 test results. The peak stress and corresponding peak strain model are established. To evaluate the accuracy of proposed model,the calculated results are compared with results from other existing model,such as Attard and Setunge model,Candappa model,Lu and Hsu model and Jiang and Teng model. Based on the stress- strain equation originally proposed by Popovics model,a constitutive model for both the actively confined normal and high strength concrete is also established. It is eventually found that the peak stress and peak strain model shows more accuracy than other existing models for actively confined HSC. The stress- strain curves predicted by the analysis- oriented constitutive model are in close agreement with the experimental curves,which provided theoretical basis for the nonlinear analysis of structure elements.
引文
[1]Lloyd N A,Rangan B V.Studies on high-strength concrete columns under eccentric compression[J].ACI Structural Journal,1996,93(6):631-638.
    [2]Richart F E,Brandtzaeg A,Brown R L.A study of the failure of concrete under combined compressive stresses[J].University of Illinois Bulletin,1928,26(12),185.
    [3]Hognestad E.Study of combined bending and axial load in reinforced concrete members[J].University of Illinois Bulletin,1951,399.
    [4]Wang P T,Shah S P,Naaman A E.Stress-Strain Curves of Normal and Lightweight Concrete?1n Compression[J].ACI Journal,1978,75(1):603-611.
    [5]Kent D C,Park R.Flexural members with confined concrete[J].Journal of the Structural Division,1971,97(7):1969-1990.
    [6]Saatcioglu M,Razvi S R.Strength and ductility of confined concrete[J].Journal of Structural Engineering,1992,118(6):1590-1607.
    [7]Ansari F,Li Q.High-strength concrete subjected to triaxial compression[J].ACI Materials Journal,1998,95:747-755.
    [8]Attard M M,Setunge S.Stress-strain relationship of confined and unconfined concrete[J].ACI Materials Journal,1996,93:432-442.
    [9]Bellotti R,Rossi P.Cylinder tests:experimental technique and results[J].Materials and Structures,1991,24(1):45-51.
    [10]Candappa D C,Sanjayan J G,Setunge S.Complete triaxial stress-strain curves of high-strength concrete[J].Journal of Materials in Civil Engineering,2001,13(3):209-215.
    [11]Gardner N J.Triaxial behavior of concrete[C]//Journal Proceedings,1969,66(2):136-158.
    [12]Hurlbut B J.Experimental and computational investigation of strain-softening in concrete[M].1985.
    [13]Imran I.Applications of non-associated plasticity in modelling the mechanical response of concrete[D].University of Toronto,1994.
    [14]Jamet P,Millard A,Nahas G.Triaxial behaviour of a micro-concrete complete stress-strain curves for confining pressures ranging from 0 to 100MPa[R].CEA Centre d'Etudes Nucleaires de Saclay,1984.
    [15]Kotsovos M D,Newman J B.Generalized stress-strain relations for concrete[J].Journal of the Engineering Mechanics Division,1978,104(4):845-856.
    [16]Lahlou K,A?tcin P C,Chaallal O.Behaviour of high-strength concrete under confined stresses[J].Cement and Concrete composites,1992,14(3):185-193.
    [17]Lu X,Hsu C T T.Stress-strain relations of high-strength concrete under triaxial compression[J].Journal of materials in civil engineering,2007,19(3):261-268.
    [18]Sfer D,Carol I,Gettu R,et al.Study of the behavior of concrete under triaxial compression[J].Journal of Engineering Mechanics,2002,128(2):156-163.
    [19]Smith S S,Willam K J,Gerstle K H,et al.Concrete over the top,or:is there life after peak[J].ACI Materials Journal,1989,86(5):491-497.
    [20]Tan T H,Sun X.Failure criteria of concrete under triaxial compression[J].Special Publication,2006,238:235-248.
    [21]Xie J,Elwi A E,Mac Gregor J G.Mechanical properties of three high-strength concretes containing silica fume[J].Materials Journal,1995,92(2):135-145.
    [22]Gabet T,Malécot Y,Daudeville L.Triaxial behaviour of concrete under high stresses:Influence of the loading path on compaction and limit states[J].Cement and Concrete Research,2008,38(3):403-412.
    [23]Hammons M I,Neeley B D.Triaxial characterization of high-strength Portland cement concrete[J].Transportation research record,1993,73-77.
    [24]Kotsovos M D,Newman J B.A mathematical description of the deformational behaviour of concrete under complex loading[J].Magazine of Concrete Research,1979,31(107):77-90.
    [25]Vu X H,Malecot Y,Daudeville L,et al.Experimental analysis of concrete behavior under high confinement:Effect of the saturation ratio[J].International Journal of Solids and Structures,2009,46(5):1105-1120.
    [26]Rutland C A,Wang M L.The effects of confinement on the failure orientation in cementitious materials experimental observations[J].Cement and concrete composites,1997,19(2):149-160.
    [27]Setunge S,Attard M M,Darvall P.Ultimate strength of confined very high-strength concretes[J].Structural Journal,1993,90(6):632-641.
    [28]Jiang T,Teng J G.Analysis-oriented stress–strain models for FRP–confined concrete[J].Engineering Structures,2007,29(11):2968-2986.
    [29]Imran I,Pantazopoulou S J.Plasticity model for concrete under triaxial compression[J].Journal of engineering mechanics,2001,127(3):281-290.
    [30]Popovics S.A numerical approach to the complete stress-strain curve of concrete[J].Cement and concrete research,1973,3(5):583-599.
    [31]ACI Committee 318.Building Code Requirements for Structural Concrete(ACI 318M-08)and Commentary.American Concrete Institute,2008.
    [32]Carrasquillo R L,Nilson A H,Slate F O.Properties of high-strength concrete subjected to short term loads[J].ACI Journal,1981,78(3),171-178.
    [33]Lu X,Hsu C T T.Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression[J].Cement and Concrete Research,2006,36(9):1679-1685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700