可见光降解有机污染物催化剂研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of visible-light response photocatalysts for organic pollutant degradation
  • 作者:位海棠 ; 张洞铭 ; 吕天平 ; 张艮林 ; 柳清菊
  • 英文作者:WEI Haitang;ZHANG Dongming;LYU Tianping;ZHANG Genlin;LIU Qingju;Key Laboratory of Micro-Nano Materials and Technology, School of Materials Science and Engineering, Yunnan University;
  • 关键词:催化降解 ; 可见光 ; 有机物 ; 光催化剂
  • 英文关键词:catalytic degradation;;visible light;;organic matter;;photocatalyst
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:云南大学材料科学与工程学院云南省微纳材料与技术重点实验室;
  • 出版日期:2019-05-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.428
  • 基金:国家自然科学基金资助项目(51562038)
  • 语种:中文;
  • 页:GNCL201905007
  • 页数:9
  • CN:05
  • ISSN:50-1099/TH
  • 分类号:39-47
摘要
光降解水中有机污染物是解决环境问题非常有前途的策略。主要介绍了近年来光催化降解有机污染物的国内外最新研究进展,重点介绍了钛酸盐光催化剂、钽酸盐光催化剂、铌酸盐光催化剂、无机层状化合物、金属硫化物、Z型光催化反应体系。着重总结了金属硫族化合物催化剂降解有机污染物存在的问题及可行的解决方案,并对以后可见光催化降解有机物的研究发展趋势进行了展望。
        Photodegradation of aqueous organic pollutants is a very promising strategy to address environmental issues and energy problems. In this paper, the latest research progress of photocatalytic degradation of organic pollutants in recent years was introduced, focusing on titanate photocatalyst, tantalum photocatalyst, niobate photocatalyst, inorganic layered compounds, metal sulfides, and Z-type photocatalytic reaction system. The problems and feasible solutions of degradation of organic pollutants by metal chalcogenide catalysts were summarized, and the future research work on visible light photocatalytic degradation of organic pollutants was prospected.
引文
[1] Li X Y,Pi Y H,Wu L Q,et al.Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation[J].Applied Catalysis B:Environmental,2017,202:653-663.
    [2] Mirbagheri N S,Sabbaghi S.A Ti-doped γ-Fe2O3/SDS nano-photocatalyst as an efficient adsorbent for removal of methylene blue from aqueous solutions[J].Journal of Environmental Management,2018,213:56-65.
    [3] Cheng M,Zeng G M,Huang D L,et al.Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2Fenton-like system[J].Water Research,2018,138:7-18.
    [4] Xing B S,Jin R C.Inhibitory effects of heavy metals and antibiotics on nitrifying bacterial activities in mature partial nitritation[J].Chemosphere,2018,200:437-445.
    [5] Chen F,Yang Q,Wang Y L,et al.Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(Ⅵ) reduction and ciprofloxacin oxidation under visible light:kinetics,degradation pathways and mechanism[J].Chemical Engineering Journal,2018,348:157-170.
    [6] Dodgen L K,J Li,Parker D,et al.Uptake and accumulation of four PPCP/EDCs in two leafy vegetables[J].Environmental Pollution,2013,182:150-156.
    [7] Yang S J,Qiu X J,Jin P K,et al.MOF-templated synthesis of CoFe2O4nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A[J].Chemical Engineering Journal,2018,353:329-339.
    [8] Huang L J,He M,Chen B B,et al.Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water[J].Chemosphere,2018,199:435-444.
    [9] Rezgui S,Amrane A,Fourcade F,et al.Electro-Fenton catalyzed with magnetic chitosan beads for the removal of Chlordimeform insecticide [J].Applied Catalysis B:Environmental,2018,226:346-359.
    [10] Zhang Q,Huang W,Hong J M,et al.Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2[J].Chemical Engineering Journal,2018,343:662-675.
    [11] Vidal J,Huilinir C,Santander R,et al.Effective removal of the antibiotic nafcillin from water by combining the photoelectro-Fenton process and anaerobic biological digestion[J].Science of The Total Environment,2018,624:1095-1105.
    [12] Mahdavi H R,Arzani M,Isanejad M,et al.Effect of hydrophobic and hydrophilic nanoparticles loaded in D2EHPA/M2EHPA-PTFE supported liquid membrane for simultaneous cationic dyes pertraction[J] Journal of Environmental Management,2018,213:288-296.
    [13] Makhetha T A,Moutloali R M.Antifouling properties of Cu (tpa)@GO/PES composite membranes and selective dye rejection[J].Journal of Membrane Science,2018,554:195-210.
    [14] Liu Y L,Wang X M,Yang H W,et al.Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes [J].Chemosphere,2018,200:36-47.
    [15] Zhang S Q,Wang L L,Liu C B,et al.Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst[J].Water Research,2017,121:11-19.
    [16] Wan H C,Yao W T,Zhu W K,et al.Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation [J].Applied Surface Science,2018,444:355-363.
    [17] Ma H Y,Zhao L Z,Wang D B,et al.Dynamic tracking of highly toxic intermediates in photocatalytic degradation of pentachlorophenol by continuous flow chemiluminescence[J].Environmental Science & Technology,2018,52(5):2870-2877.
    [18] Tang Xinde,Hu Hanxiang,Wang Wenge.Recent progress on hydrogen production from photocatalytic water splitting under visible light irradiation[J].Guangdong Chemical Industry,2012,39(8):163-164.唐新德,胡汉祥,王文革.可见光催化分解水制氢的研究进展[J].广东化工,2012,39(8):163-164(in Chinese).
    [19] Domen K,Kudo A,Onishi T.Mechanism of photocatalytic decomposition of water into H2,and O2,over NiO+SrTiO3[J].Journal of Catalysis,1986,102(1):92-98.
    [20] Inoue Y,Asai Y,Sato K.Photocatalysts with tunnel structures for decomposition of water.Part 1 —BaTi4O9,a pentagonal prism tunnel structure,and its combination with various promoters[J].Journal of Chemical Society,Faraday Transactions,1994,90(5):797-802.
    [21] Takata T,Furumi Y,Shinohara K,et al.Photocatalytic decomposition of water on spontaneously hydrated layered perovskites [J].Chemical of Materials,1997,9(5):1063-1064.
    [22] Ogura S,Kohno M,Sato K,et al.Photocatalytic activity for water decomposition of RuO2 -combined M2Ti6O13,(M=Na,K,Rb,Cs)[J].Applied Surface Science,1997,121–122(1):521-524.
    [23] Inoue Y,Kubokawa T,Sato K.Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water.[J].The Journal of Physical Chemistry,1991,95(10):4059-4063.
    [24] Ogura S,Sato K,Inoue Y.Effects of RuO2 dispersion on photocatalytic activity for water decomposition of BaTi4O9 with a pentagonal prism tunnel and K2Ti4O9 with a zigzag layer structure [J].Physical Chemistry Chemical Physics,2000,2(10):2449-2454.
    [25] Lyu Ming,Su Xuejun,Rao Pinggen.Progress in research on new semiconductor materials for hydrogen production by photocatalytic water splitting [J].Materials Review,2005 (5):1-3(in Chinese).吕明,苏雪筠,饶平根.新型光解水制氢用半导体光催化材料的研究进展[J].材料导报,2005 (5):1-3.
    [26] Alberto S C,Tatiana H V,Klimova E.Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis[J].Fuel,2017,198:22-30.
    [27] Rueyan D,Liao C Y.Enhanced visible-light-responsive photodegradation of bisphenol A by Cu,N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method[J].Journal of Hazardous Materials,2017,322:254-262.
    [28] Liu G G,Han K,Ye H Q,et al.Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment [J].Chemical Engineering Journal,2017,320:74-80.
    [29] Ali M,Flores H,Leticia M,et al.Overall photocatalytic water splitting on Na2ZrxTi6-xO13 (x=0,1) nanobelts modified with metal oxide nanoparticles as cocatalysts[J].International Journal of Hydrogen Energy,2017,42:14547-14559.
    [30] Xu Y,Wen W,Wu J M.Titania nanowires functionalized polyester fabrics with enhanced photocatalytic and antibacterial performances [J].Journal of Hazardous Materials,2018,343:285-297.
    [31] Kato H,Kudo A.New tantalate photocatalysts for water decomposition into H2,and O2[J].Chemical Physics Letters,1998,295(5–6):487-492.
    [32] Shimizu K,Tsuji Y,Kawakami M,et al.Photocatalytic water splitting over spontaneously hydrated layered tantalate A2SrTa2O7·nH2O (A=H,K,Rb)[J].Chem Lett,2002,31(11):1158-1159.
    [33] Kudo A,Kato H,Nakagawa S.Water splitting into H2 and O2 on new Sr2M2O7 (M=Nb and Ta) photocatalysts with layered perovskite structures:factors affecting the photocatalytic activity[J].The Journal of Physical Chemistry B,2000,104 (3):571-575.
    [34] Machida M,Mitsuyama T,Ikeue K,et al.Photocatalytic property and electronic structure of triple-layered perovskite tantalates,MCa2Ta3O10(M=Cs,Na,H,and C6H13NH3)[J].The Journal of Physical Chemistry B,2005,109(16):7801-7806.
    [35] Kurihara T,Okutomi H,Miseki Y,et al.Highly efficient water splitting over K3Ta3B2O12 photocatalyst without loading cocatalyst[J].Chemistry Letters,2006,35(3):274-275.
    [36] Kato H,Kudo A.Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts[J].Catalysis Letters,1999,58(2-3):153-155.
    [37] Ishihara T,Nishiguchi H,Fukamachi K,et al.Effects of acceptor doping to KTaO3on photocatalytic decomposition of pure H2O[J].Journal of Physical Chemistry B,1999,103(1):1-3.
    [38] Otsuka H,Kim K Y,Kouzu A,et al.Photocatalytic performance of Ba5Ta4O15to decomposition of H2O into H2 and O2[J].Chemistry Letters,2005,34(6):822-823.
    [39] Ren M L,Chen J,Wang P F,et al.Construction of silver iodide/silver/bismuth tantalate Z-scheme photocatalyst for effective visible light degradation of organic pollutants [J].Journal of Colloid and Interface Science,2018,532:190-200.
    [40] Wang K,Zhang G K,Li J,et al.0D/2D Z-scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics[J].ACS Applied Materials & Interfaces,2017,9(50):43704-43715.
    [41] Lyu M L,Sun X Q,Wei S H,et al.Ultrathin lanthanum tantalate perovskite nanosheets modified by nitrogen doping for efficient photocatalytic water splitting[J].ACS Nano,2017,11(11):11441-11448.
    [42] Wang J T,Xiao C,Wu X Y,et al.Potassium tantalate K6Ta10.8O30 with tungsten bronze structure and its photocatalytic property[J].Chinese Journal of Chemistry,2017,35(2):189-195.
    [43] Wang M,Fang M H,Xin M,et al.Molten salt synthesis of NaNbxTa1-xO3 perovskites with enhanced photocatalytic activity [J].Chemical Physics Letters,2017,686:18-25.
    [44] Liu X X,Qin C X,Cao L,et al.A silver niobate photocatalyst AgNb7O18 with perovskite-like structure[J].Journal of Alloys and Compounds,2017,724:381-388.
    [45] Zhang D F,Meng X,Meng Y,et al.One-pot molten salt synthesis of CdNb2O6/Cd2Nb2O7 heterojunction photocatalysts with enhanced photocatalytic properties [J].Separation and Purification Technology,2017,186:282-289.
    [46] Qu Z P,Wang J,Tang J H,et al.Carbon quantum dots/KNbO3 hybrid composites with enhanced visible-light driven photocatalytic activity toward dye waste-water degradation and hydrogen production [J].Molecular Catalysis,2018,445:1-11.
    [47] Yan M,Hua Y Q,Zhu F F,et al.Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics[J].Applied Catalysis B:Environmental,2017,202:518-527.
    [48] Zhang B B,Zhang D F,Xi Z S,et al.Synthesis of Ag2O/NaNbO3 p-n junction photocatalysts with improved visible light photocatalytic activities[J].Separation and Purification Technology,2017,178:130-137.
    [49] Ao Y H,Wang D D,Wang P F,et al.Enhanced photocatalytic properties of the 3D flower-like Mg-Al layered double hydroxides decorated with Ag2CO3 under visible light illumination[J].Materials Research Bulletin,2016,80:23-29.
    [50] Zhao G Q,Li C F,Wu X,et al.Reduced graphene oxide modified Ni Fe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J].Applied Surface Science,2018,434:251-259.
    [51] Reshalaiti H,Dong G H,Ma Y C,et al.Layered perovskite Pb2Bi4Ti5O18 for excellent visible light-driven photocatalytic NO removal[J].Industrial & Engineering Chemistry Research,2017,56(11):2908-2916.
    [52] Jiang H Y,Katsumata K,Jeongsoo H,et al.Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides[J].Applied Catalysis B:Environmental,2018,224:783-790.
    [53] Bessekhouada Y,Mohammedib M,Trari M.Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst[J].Solar Energy Materials and Solar Cells,2002,73(3):339-350.
    [54] Kim J,Misook K.High photocatalytic hydrogenproduction over the band gap-tuned urchin-like Bi2S3-Loaded TiO2 composites system [J].International Journalof Hydrogen Energy,2012,37(10):8249-8256.
    [55] Zhou M L,Jiang X,Jiang X X,et al.BaAu2S2:A Au-based intrinsic photocatalyst for high-performance visible-light photocatalysis[J].Inorganic Chemistry,2017,56(9):5173-5181.
    [56] Li C,Lin Z H,Kang L,et al.Sn2SiS4,synthesis,structure,optical and electronic properties[J].Optical Materials,2015,47:379-385.
    [57] Liang Q,Jin J,Zhang M,et al.Construction of mesoporous carbon nitride/binary metal sulfide heterojunction photocatalysts for enhanced degradation of pollution under visible light [J].Applied Catalysis B:Environmental,2017,218:545-554.
    [58] Chen H,Zhang Z L,Yang Z L,et al.Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS[J].Chemical Engineering Journal,2015,273:481-489.
    [59] Cheng F Y,Yin H,Xiang Q J.Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity[J].Applied Surface Science,2017,391:432-439.
    [60] Zhao Y J,Zhang X W,Wang C Z,et al.The synthesis of hierarchical nanostructured MoS2/Graphene composites with enhanced visible-light photo-degradation property[J].Applied Surface Science,2017,412:207-213.
    [61] Maeda K,Higashi M,Lu D L,et al.Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J].Journal of the American Chemical Society,2010,132(16):5858-5868.
    [62] Chen M,Zhang Z Y,Xu J,et al.Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme g-C3N4/Bi3TaO7 nanocomposite photocatalyst[J].Dalton Transactions,2017(46):8431-8438.
    [63] Xia P F,Zhu B C,Cheng B,et al.2D/2Dg-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity[J].ACS Sustainable Chemistry and Engineering,2018,6(1):965-973.
    [64] Chen F,Yang Q,Li X M,et al.Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4(040) Z-scheme photocatalyst:an efficient,sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation[J].Applied Catalysis B:Environmental,2017,200:330-342.
    [65] Wan Z,Zhang G K,Wu X Y,et al.Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst:oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr (Ⅵ) reduction [J].Applied Catalysis B:Environmental,2017,207:17-26.
    [66] Ye X J,Zhao S S,Meng S G,et al.Remarkable enhancement of photocatalytic performance via constructing a novel Z-scheme KNbO3/Bi2O3 hybrid material[J].Materials Research Bulletin,2017,94:352-360.
    [67] Zhu B C,Xia P F,Li Y,et al.Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J].Applied Surface Science,2017,391:175-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700