TAP-BPDA超支化聚酰亚胺的制备及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Properties of TAP-BPDA Hyperbranched Polyimides
  • 作者:陈营 ; 周红梅 ; 陈德平 ; 慕东 ; 魏燕红 ; 叶远新
  • 英文作者:CHEN Ying;ZHOU Hongmei;CHEN Deping;MU Dong;WEI Yanhong;YE Yuanxin;School of Materials Engineering,Chengdu Technological University;
  • 关键词:超支化聚酰亚胺 ; 合成 ; 分子量 ; 溶解性能 ; 热性能
  • 英文关键词:hyperbranched polyimides;;synthesis;;molecular weight;;solubility;;thermal property
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:成都工业学院材料工程学院;
  • 出版日期:2019-05-25
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:四川省科技计划项目(2019YJ0376)~~
  • 语种:中文;
  • 页:CLDB2019S1109
  • 页数:4
  • CN:S1
  • ISSN:50-1078/TB
  • 分类号:500-503
摘要
采用不同物质的量比的3,3′,4,4′-联苯四甲酸二酐(BPDA)和2,4,6-三氨基嘧啶(TAP)合成了一系列具有不同终端基团的超支化聚酰亚胺。然后采用红外光谱(FT-IR)、核磁共振(~1H-NMR)、凝胶渗透色谱(GPC)、热失重分析(TGA)、差示扫描量热仪(DSC)对合成的超支化聚酰亚胺进行了测试和表征。结果表明:酸酐终端的超支化聚酰亚胺的分子量和特性粘度高于氨基终端的超支化聚酰亚胺,并且,当TAP与BPDA的物质的量比为2∶3时,所得超支化聚酰亚胺具有最高的数均分子量和最高的特性粘度。氨基终端的超支化聚酰亚胺比酸酐终端的超支化聚酰亚胺具有更高的5%热失重温度和玻璃化转变温度。对聚酰亚胺的溶解性能进行测试,结果表明,所得到的三种超支化聚酰亚胺在N,N-二甲基甲酰胺(DMF)、二甲亚砜(DMSO)等非质子强极性溶剂中具有良好的溶解性能,并且酸酐终端超支化聚酰亚胺的溶解性优于氨基终端的超支化聚酰亚胺。
        A series of hyperbranched polyimides with different terminated groups were prepared based on BPDA and 2,4,6-triaminopyrimidine(TAP) via a two-step polymerization. The obtained HBPIs' structures and performance were characterized by Fourier transform infrared spectroscopy(FT-IR), gel permeation chromatography(GPC), thermal gravimetrie analysis(TGA), differential scanning calorimetry(DSC), and so on.The results show that the polyimides with the highest number average molecular weights(M_n) and inherent viscosities would be obtained when the molar ratio of TAP to BPDA was 2∶3. And the glass transition temperatures(T_g) and 5% weight loss temperatures of amine-terminated polyi-mides were higher than that of anhydride-terminated polyimides. All of the polyimides showed excellent solubility in strong polar solvents such as DMF and DMSO, and the solubility of anhydride-terminated polyimides were higher than that of amine-terminated polyimides.
引文
1 Meyer G W,Pak S J,Lee Y J,et al.Polymer,1995,36(11),2303.
    2 Sroog C E.Progress in Polymer Science(UK),1991,16(4),561.
    3 丁孟贤.聚酰亚胺:化学,结构与性能的关系及材料.科学出版社,2006.
    4 Liu Y,Zhang Y,Lan Q,et al.Chemistry of Materials,2012,24(6),1212.
    5 龚金华,王臣辉,卞子君,等.物理化学学报,2015,31(10),1963.
    6 Zhuang Y,Seong J G,Do Y S,et al.Journal of Membrane Science,2016,504,55.
    7 Zhuang Y,Seong J G,Do Y S,et al.Macromolecules,2014,47(10),3254.
    8 Robeson L M,Dose M E,Freeman B D,et al.Journal of Membrane Scie-nce,2017,525,18.
    9 Flory P J.Journal of the American Chemical Society,1952,74(11),2718.
    10 Kim Y H,Webster O W.Journal of the American Chemical Society,1990,112(11),4592.
    11 Fang J,Kita H,Okamoto K.Macromolecules,2000,33(13),4639.
    12 Fang J,Kita H,Okamoto K.Journal of Membrane Science,2001,182(1),245.
    13 Hawthorne D G,Hodgkin J H.High Performance Polymers,1999,11(3),315.
    14 Fang Q,Wang J,Gu S,et al.Journal of the American Chemical Society,2015,137(26),8352.
    15 Liaw D J,Wang K L,Huang Y C,et al.Progress in Polymer Science,2012,37(7),907.
    16 Gu J,Lv Z,Wu Y,et al.Composites Part A:Applied Science and Manufacturing,2017,94,209.
    17 Kim Y H,Webster O W.Journal of the American Chemical Society,1990,112(11),4592.
    18 Kim Y H.Journal of Polymer Science Part A Polymer Chemistry,1998,36(11),1685.
    19 Fang J,Kita H,Okamoto K.Macromolecules,2000,33(13),4639.
    20 Fang J,Kita H,Okamoto K.Journal of Membrane Science,2001,182(1),245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700