赤霉素GA4是水稻矮化特征的重要调节因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enrichment Profile of GA4 is an Important Regulatory Factor Triggering Rice Dwarf
  • 作者:黄升财 ; 王冰 ; 谢国强 ; 刘中来 ; 张美娟 ; 张树清 ; 程宪国
  • 英文作者:HUANG ShengCai;WANG Bing;XIE GuoQiang;LIU ZhongLai;ZHANG MeiJuan;ZHANG ShuQing;CHENG XianGuo;Intitute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences;Jiu Jiang Academy of Agricultural Sciences;
  • 关键词:水稻 ; 半矮化突变体 ; OsGA13ox ; 赤霉素GA4 ; D14 ; 有效分蘖
  • 英文关键词:rice;;semi-dwarf mutant;;OsGA13ox;;GA4;;D14;;effective tiller
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:中国农业科学院农业资源与农业区划研究所;九江农业科学院;
  • 出版日期:2019-03-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:转基因重大专项(2016ZX08010005-9)
  • 语种:中文;
  • 页:ZNYK201905002
  • 页数:15
  • CN:05
  • ISSN:11-1328/S
  • 分类号:15-29
摘要
【目的】以水稻幼胚组培过程中获得的一株半矮化水稻突变体为研究对象,解析水稻半矮化突变体株高变矮及分蘖增多等表型异常的原因,为克服水稻过度矮化发育障碍因子及培育抗倒伏高产水稻品种提供科学理论依据。【方法】首先统计分析半矮化水稻突变体与野生型的表型差异,利用体式显微镜和光学显微镜观察突变体花的结构及其细胞特征;通过转录组测序及qRT-PCR分析差异基因的表达特征,并通过外源喷施赤霉素GA3处理检测突变体对外源赤霉素的敏感性;最后利用高效液相色谱和质谱联仪检测突变体内赤霉素的含量与富集特征。【结果】表型观测与统计结果表明,突变体水稻株高比野生型减少56.59%,有效分蘖数高出47.44%,差异均达到极显著水平。突变体的表皮毛消失且花发育迟缓,雄蕊变小。尽管突变体分蘖数较高但结实率明显降低,仅为野生型的12.62%,且种子长度和宽度均减小,差异极显著。通过显微镜观察茎的纵切切片,发现突变体细胞长度减少23%,差异极显著。外源喷施赤霉素后突变体的株高、有效分蘖、结实率、种子大小、表皮毛和茎秆细胞长度均有不同程度的恢复,说明植物体内赤霉素合成不足可能是引起水稻矮化的主要原因。转录组测序结果显示突变体中OsGA13ox显著上调,qRT-PCR验证结果与转录组测序结果一致。由于OsGA13ox控制GA12转化为GA53,而GA12和GA53分别转化为GA4和GA1,GA4的活性高于GA1,因此,突变体中GA4减少可能是导致半矮化的主要原因。赤霉素检测结果表明突变体中GA4含量减少94.9%,与预测结果一致。此外,D14作为SL(独脚金内酯)的特异性受体,参与调控植物SL信号转导,抑制枝条分枝或者分蘖。qRT-PCR结果显示,与野生型相比,突变体中D14显著下调,而经过GA3处理的野生型和突变体中D14均显著上调。D14上调可能导致有效分蘖数减少,而其下调可能致使有效分蘖数增加。统计结果表明突变体中有效分蘖显著增多,而经过GA处理之后,野生型和突变体有效分蘖数均显著低于未经GA3处理前,表明D14在水稻中的表达可能受到GA的调控从而影响水稻分蘖。【结论】OsGA13ox异常表达导致活性更高的GA4在水稻中的富集减少,形成水稻半矮化突变体;赤霉素可能通过影响D14的表达间接调控水稻的分蘖。
        【Objective】A dwarf rice mutant was generated by culturing rice embryo tissues and characterized to elucidate the reasons for leading to an occurence of semi-dwarf rice with more tiller number. It is expected that this study will provide a theoretical basis for scientifically cultivating rice varieties of lodging-resistant and high-yielding in overcoming the dwarf obstacle factors.【Method】In this study, both the rice dwarf mutant and wild type were phenotypically profiled, and the structural characteristics of flower and cell appearance of leaves were investigated by stereomicroscope and light microscopy; The differential gene expression profiles were analyzed by both the transcriptomics and qRT-PCR, and the sensitivity of the mutant to exogenous gibberellin was detected by spraying exogenous GA3; The enrichment profiles of gibberellin in the mutant were detected by a high performance liquid chromatography and a mass spectrometry. 【Result】Data showed that the mutant demonstrated a decrease of 56.59% in the average plant height and an increase of 47.44% in the effective tiller number compared with the wild type, respectively(P<0.01).Observation showed that the mutant led to disappearance of the epidermis and revealed a smaller stamen accompanying a delayed development in the flower organs. Although the mutant has a higher effective tiller number, but significantly lowers the seed setting rate, which only accounts for 12.62% of that in the wild type. The length and the width of grains also are significantly reduced(P<0.01). Stem longitudinal sections reveal that the mutant decreased the cell length of 23% compared with the wild type(P<0.01).However, when the mutant was exposed to exogenous gibberellin, the plant height, effective tiller number, seed setting rate, seed size,epidermis and the stem cell length were obviously restored, indicating that the dwarf mutant possibly results from the shortage of GA's synthesis in plant. Transcriptome sequencing showed that the mutant significantly up-regulated the OsGA13 ox gene, and exhibited an identical result with the qRT-PCR analyses. Since the OsGA13 ox controls the conversion of the GA12 to the GA53,both of which are converted to the GA4 and the GA1, respectively. Particularly, the GA4 exhibits a higher activity than the GA1,suggesting that rice dwarf might be triggered by the reduction of GA4 enrichment in plant. Measurement confirmed that the accumulation of the GA4 in the mutant was decreased by 94.9% compared with the wild type. Additionally, as a specific receptor for SL(Strigolactone), the D14 gene is involved in the SL signaling transduction in plant, and thus inhibits branching or tillering. The q RT-PCR showed that the mutant significantly down-regulated the D14 gene compared to the wild type, however, both the wild type and the mutant significantly up-regulated after spraying GA3. The data suggested that the up-regulation of the D14 gene might lower the effective tiller number, while the down-regulation of the D14 gene possibly increase the effective tiller number. Statistical analyses demonstrates that the mutant significantly increased the effective tiller number, but both the wild type and mutant decreased the effective tiller number after spraying GA3, indicating that the expression profiles of the D14 gene in rice might be modulated by GA, and thereby exert on the tiller number.【Conclusion】Semi-dwarfed rice mutant is likely caused by a decrease of GA4 enrichment because of abnormal expression of the OsGA13 ox gene, and GA might indirectly regulate rice tiller by affecting the expression of the D14 gene.
引文
[1]SPIELMEYER W,ELLIS M H,CHANDLER P M.Semidwarf(sd-1),“green revolution”rice,contains a defective gibberellin 20-oxidase gene.Proceedings of the National Academy of Sciences of the United States of America,2002,99(13):9043-9048.
    [2]PENG J,RICHARDS D E,HARTLEY N M,MURPHY G P,DEVOSK M,FLINTHAM J E,BEALES J,FISH L J,WORLAND A J,PELICA F.‘Green revolution’genes encode mutant gibberellin response modulator.Nature,1999,400:256-261.
    [3]YAMAMURO C,IHARA Y,WU X,NOGUCHI T,FUJIOKA S,TAKATSUTO S,ASHIKARI M,KITANO H,MATSUOKA M.Loss of function of a rice brassinosteroid insensitive 1 homolog prevents internode elongation and bending of the lamina joint.The Plant Cell,2000,12:1591-1606.
    [4]HONG Z,UEGUCHI-TANAKA M,FUJIOKA S,TAKATSUTO S,YOSHIDA S,HASEGAWA Y,ASHIKARI M,KITANOH,MATSUOKA M.The Rice brassinosteroid-deficient dwarf2 mutant defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1,is rescued by the endogenously accumulated alternative bioactive brassinosteroid,dolichosterone.The Plant Cell,2005,17:2243-2254.
    [5]ARITE T,IWATA H,OHSHIMA K,MAEKAWA M,NAKAJIMA M,KOJIMA M,SAKAKIBARA H,KYOZUKA J.DWARF10,an RMsI/MAX4/DAD1 ortholog,controls lateral bud out-growth in rice.The Plant Journal,2007,51(6):1019-1029.
    [6]ISHIKAWA S,MAEKAWA M,ARITE T,ONISHI K,TAKAMURE I,KYOZUKA J.Suppression of tiller bud activity in tillering dwarf mutants of rice.Plant Cell Physiology,2005,46(1):79-86.
    [7]FLEET C M,SUN T P.A DELLAcate balance:the role of gibberellin in plant morphogenesis.Current Opinion in Plant Biology,2005,8(1):77-85.
    [8]谈心,马欣荣.赤霉素生物合成途径及其相关研究进展.应用与环境生物学报,2008,14(4):571-577.TAN X,MA X R.Advance in research of gibberellin biosynthesis pathway.Chinese Journal of Applied and Environmental Biology,2008,14(4):571-577.(in Chinese)
    [9]THOMAS S G,SUN T P.Update on gibberellin signaling.A tale of the tall and the short.Plant Physiology,2004,135:668-676.
    [10]YAMAGUCHI S,SUN T P,KAWAIDE H,KAMIYA Y.The GA2locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis.Plant Physiology,1998,116:1271-1278.
    [11]HELLIWELL CA,POOLE A,PEACOCK W J,DENNIS E S.Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis.Plant Physiology,1999,119(2):507-510.
    [12]MARGIS-PINHEIRO M,ZHOU X R,ZHU Q H,DENNIS E S,UPADHYAYA N M.Isolation and characterization of a Ds-tagged rice(Oryza sativa L.)GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.Plant Cell Reports,2005,23(12):19-33.
    [13]ITOH H,TATSUMI T,SAKAMOTO T,OTOMO K,TOYOMASU T,KITANO H,ASHIKARI M,ICHIHARA S,MATSUOKA M.A rice semi-dwarf gene,Tan-ginbozu(D35),encodes the gibberellin biosynthesis enzyme,ent-kaurene oxidase.Plant Molecular Biology,2004,54(4):533-547.
    [14]UEGUCHI-TANAKA M,ASHIKARI M,NAKAJIMA M,ITOH H,KATOH E,KOBAYASHI M,CHOW TY,HSING YI,KITANO H,YAMAGUCHI I,MATSUOKA M.GIBBERELLIN INSENSITIVEDWARF1 encodes a soluble receptor for gibberellin.Nature,2005,437(7059):693-698.
    [15]GOMI K,SASAKI A,ITOH H,UEGUCHI-TANAKA M,ASHIKARIM,KITANO H,MATSUOKA M.GID2,an F-box subunit of the SCFE3 complex,specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice.The Plant Journal,2004,37(4):626-634.
    [16]SUN T P.Gibberellin-GID1-DELLA:A pivotal regulatory module for plant growth and development.Plant Physiology,2010,154(2):567-570.
    [17]尹昌喜.细胞质雄性不育水稻包穗的激素调控[D].南京:南京农业大学,2007:6.YIN C X.Plant hormone regulation on panicle enclosure in cytoplasmic male sterile rice[D].Nanjing:Nanjing Agricultural University,2007:6.(in Chinese)
    [18]张玲.水稻矮化并花发育异常突变体dwarf and deformed flower 2(ddf2)的基因定位与候选基因分析[D].重庆:西南大学,2015:6.ZHANG L.Gene mapping and candidate gene analysis of dwarf and deformed flower 2(ddf2)mutants in rice(Oryza sativa)[D].Chongqing:Southwestern University,2015:6.(in Chinese)
    [19]WANG Y P,TANG S Q,WU Z F,SHI Q H,WU Z M.Phenotypic analysis of a dwarf and deformed flower 3(ddf3)mutant in rice(Oryza sativa L.)and characterization of candidate genes.Journal of Integrative Agriculture,2018,5(17):1057-1065.
    [20]SOREFAN K,BOOKER J,HAUROGNéK,GOUSSOT M,BAINBRIDGE K,FOO E,CHATFIELD S,WARD S,BEVERIDGEC,RAMEAU C,LEYSER O.MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea.Genes&Development,2003,17:1469-1474.
    [21]JIANG L,LIU X,XIONG G,LIU H,CHEN F,WANG L,MENG X,LIU G,YU H,YUAN Y,YI W,ZHAO L,MA H,HE Y,WU Z,MELCHER K,QIAN Q,XU H E,WANG Y,LI J.DWARF 53 acts as a repressor of strigolactone signalling in rice.Nature,2013,504(7480):401-405.
    [22]YOUNG M D,WAKEFIELD M J,SMYTH G K,OSHLACK A.Gene ontology analysis for RNA-seq:Accounting for selection bias.Genome Biology,2010,11(2):R14.
    [23]KANEHISA M,ARAKI M,GOTO S,HATTORI M,HIRAKAWA M,ITOH M,KATAYAMA T,KAWASHIMA S,OKUDA S,TOKIMATSU T,YAMANISHI Y.KEGG for linking genomes to life and the environment.Nucleic Acids Research,2008,36:D480-D484.
    [24]MAGOME H,NOMURA T,HANADA A,TAKEDA-KAMIYA N,OHNISHI T,SHINMA Y,KATSUMATA T,KAWAIDE H,KAMIYAY,YAMAGUCHI S.CYP714B1 and CYP714B2 encode gibberellin13-oxidases that reduce gibberellin activity in rice.Proceedings of the National Academy of Sciences of the United States of America,2013,110(5):1947-1952.
    [25]ITO S,YAMAGAMI D,ASAMI T.Effects of gibberellin and strigolactone on rice tiller bud growth.Journal of Pesticide Science,2018,43(3):220-223.
    [26]ZOU J,ZHANG S,ZHANG W,LI G,CHEN Z,ZHAI W,ZHAO X,PAN X,XIE Q,ZHU L.The rice HIGH-TILLERING DWARF1encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds.The Plant Journal,2006,48:687-698.
    [27]NAKAMURA H,XUE Y L,MIYAKAWA T,HOU F,QIN H M,FUKUI K,SHI X,ITO E,ITO S,PARK S H,MIYAUCHI Y,ASANOA,TOTSUKA N,UEDA T,TANOKURA M,ASAMI T.Molecular mechanism of strigolactone perception by DWARF14.Nature Publishing Group,2013,4:2613.
    [28]KIM S K,PARK H Y,JANG Y H,LEE K C,CHUNG Y S,LEE J H,KIM J K.OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice.Planta,2016,243(3):563-576.
    [29]ITOH H,UEGUCHI-TANAKA M,SENTOKU N,KITANO H,MATSUOKA M,KOBAYASHI M.Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice.Proceedings of the National Academy of Sciences of the United States of America,2001,98(15):8909-8914.
    [30]LO S F,YANG S Y,CHEN K T,HSING YI,ZEEVAART JA,CHENL J,YU S M.A novel class of gibberellin 2-oxidases control semidwarfism,tillering,and root development in rice.The Plant Cell,2008,20(10):2603-2618.
    [31]PETER H,VALERIE S.A century of gibberellin research.Journal of Plant Growth Regulation,2015,34:740-760.
    [32]COWLING R J,KAMIYA Y,SETO H,HARBERD N P.Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis.Plant Physiology,1998,117(4):1195-1203.
    [33]TALON M,KOORNNEEF M,ZEEVAART J A.Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf GA4 and GA5 mutants.Proceedings of the National Academy of Sciences of the United States of America,1990,87(20):7983-7987.
    [34]UEGUCHI-TANAKA M,NAKAJIMA M,KATOH E,OHMIYA H,ASANO K,SAJI S,HONGYU X,ASHIKARI M,KITANO H,YAMAGUCHI I,MATSUOKA M.Molecular interactions of a soluble gibberellin receptor,GID1,with a rice DELLA protein,SLR1,and gibberellin.The Plant Cell,2007,19(7):2140-2155.
    [35]ZHANG Z L,XIE Z,ZOU X,CASARETTO J,HO T H,SHEN Q J.A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells.Plant Physiology,2004,134(4):1500-1513.
    [36]ZHANG Z L,SHIN M,ZOU X,HUANG J,HO T H,SHEN Q J.Anegative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.Plant Molecular Biology,2009,70(1/2):139-151.
    [37]GUO X,HOU X,FANG J,WEI P,XU B,CHEN M,FENG Y,CHUC.The rice GERMINATION DEFECTIVE 1,encoding a B3 domain transcriptional repressor,regulates seed germination and seedling development by integrating GA and carbohydrate metabolism.The Plant Journal,2013,75(3):403-416.
    [38]HEINRICH M,HETTENHAUSEN C,LANGE T,WüNSCHE H,FANG J,BALDWIN I T,WU J.High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems.The Plant Journal,2013,73(4):591-606.
    [39]ITO Y,KURATA N.Identification and characterization of cytokinin-signalling gene families in rice.Gene,2006,382:57-65.
    [40]SANTI L,WANG Y,STILE M R,BERENDZEN K,WANKE D,ROIG C,POZZI C,MüLLER K,MüLLER J,ROHDE W,SALAMINI F.The GA octodinucleotide repeat binding factor BBRparticipates in the transcriptional regulation of the homeobox gene Bkn3.The Plant Journal,2003,34(6):813-826.
    [41]WU C,YOU C,LI C,LONG T,CHEN G,BYRNE M E,ZHANG Q.RID1,encoding a Cys2/His2-type zinc finger transcription factor,acts as a master switch from vegetative to floral development in rice.Proceedings of the National Academy of Sciences of the United States of America,2008,105(35):12915-12920.
    [42]LIJAVETZKY D,CARBONERO P,VICENTE-CARBAJOSA J.Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families.BMC Evolutionary Biology,2003,1:17.
    [43]MAO C,WANG S,JIA Q,WU P.OsEIL1,a rice homolog of the Arabidopsis EIN3 regulates the ethylene response as a positive component.Plant Molecular Biology,2006,61(1):141-152.
    [44]HIRAGA S,SASAKI K,HIBI T,YOSHIDA H,UCHIDA E,KOSUGI S,KATO T,MIE T,ITO H,KATOU S,SEO S,MATSUI H,OHASHI Y,MITSUHARA I.Involvement of two rice ETHYLENEINSENSITIVE3-LIKE genes in wound signaling.Molecular Genetics and Genomics,2009,282(5):517-529.
    [45]RICE CHROMOSOMES 11 AND 12 SEQUENCING CONSORTIA.The sequence of rice chromosomes 11 and 12,rich in disease resistance genes and recent gene duplications.BMC Biology,2005,3:20.
    [46]KIRIK V,BAUMLEIN H.A novel leaf-specific MYB-related protein with a single binding repeat.Gene,1996,183(1/2):109-113.
    [47]LI W Q,WU J G,WENG S L,ZHANG Y,ZHANG D,SHI C.Identification and characterization of dwarf 62,a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice.Planta,2010,232(6):1383-1396.
    [48]UMEHARA M,HANADA A,YOSHIDA S,AKIYAMA K,ARITE T,TAKEDA-KAMIYA N,MAGOME H,KAMIYA Y,SHIRASU K,YONEYAMA K,KYOZUKA J,YAMAGUCHI S.Inhibition of shoot branching by new terpenoid plant hormones.Nature,2008,455(7210):195-200.
    [49]ITO S,YAMAQAMI D,UMEHARA M,HANADA A,YOSHIDA S,SASAKI Y,YAJIMA S,KYOZUKA J,UEGUCHI-TANAKA M,MATSUOKA M,SHIRASU K,YAMAGUCHI S,ASAMI T.Regulation of strigolactone biosynthesis by gibberellin signaling.Plant Physiology,2017,174(2):1250-1259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700