新疆膜下滴灌棉田暗管排盐的数值模拟与分析Ⅱ:模型应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of salt discharge by subsurface pipes in the cotton field with film mulched drip irrigation in Xinjiang, China Ⅱ: Application of the calibrated models and parameters
  • 作者:李显溦 ; 左强 ; 石建初 ; BENGAL ; Alon ; 王数
  • 英文作者:LI Xianwei;ZUO Qiang;SHI Jianchu;BENGAL Alon;WANG Shu;College of Water Resources and Civil Engineering,China Agricultural University;College of Resources and Environmental Sciences,China Agricultural University;Agricultural Research Organization;
  • 关键词:排盐 ; 暗管 ; 数值模拟 ; HYDRUS ; 2D/3D ; 膜下滴灌棉田
  • 英文关键词:salt discharge;;subsurface pipe;;numerical simulation;;HYDRUS 2D/3D;;cotton field under film mulched drip irrigation
  • 中文刊名:SLXB
  • 英文刊名:Journal of Hydraulic Engineering
  • 机构:中国农业大学水利与土木工程学院;中国农业大学资源与环境学院;以色列农业研究中心;
  • 出版日期:2016-03-10 11:32
  • 出版单位:水利学报
  • 年:2016
  • 期:v.47;No.476
  • 基金:国家自然科学基金项目(41171185;51321001);; 公益性行业(农业)科研专项经费项目(200903001-03-02)
  • 语种:中文;
  • 页:SLXB201605004
  • 页数:10
  • CN:05
  • ISSN:11-1882/TV
  • 分类号:32-41
摘要
为了降低新疆地区盐碱棉田根区土壤盐分含量,尤其是排走长期使用膜下滴灌技术造成的下部根系层(40~60 cm)累积盐分,针对当地实际情况设计了2种改进排盐模式,分别是淋洗防渗排盐模式(情景1)和暗管局部冲洗排盐模式(情景2),利用经过校验的模型和参数对不同模式下暗管排水、排盐动态过程进行模拟。情景1在暗管下方铺设一定宽度(L_f,分别设定为20、50、100、250和500 cm)的防渗材料以增加汇流面积,提高排水、排盐量;情景2先通过暗管直接供水湿润周围土壤,达到设定时间(T_i,分别设定为0.25~10 d的9种情形)后停止供水,然后再通过暗管进行排水、排盐,以期利用较小的冲洗定额达到排盐的目的。对情景1进行模拟时,以0~40 cm和40~60 cm土壤含盐量分别低于3 g/kg和6 g/kg作为结束淋洗的标准进行对比分析,结果表明:当暗管处于非饱和区域、下方无防渗处理(传统暗管排盐模式)时,其排盐率仅为9.8%,单方水的排盐效率约1.86 kg/m~3;在暗管下方进行防渗处理有利于增加暗管排盐量,排盐率可达11.9%~32.1%,排盐效率可提高至2.27~3.15 kg/m~3;然而,随着Lf增加,施工难度和成本均会大幅上升,尤其是当Lf>100 cm,单方水排盐效率的提高程度却较为有限,因此建议Lf在100 cm以内。而采用暗管供水进行局部冲洗(情景2)时,即使在暗管下方进行防渗处理,其单方水的排盐效率最高也不超过0.6 kg/m~3,整体表现并不理想,在新疆地区使用不太现实。
        Efficiency of salt removal using subsurface pipes(SSPs) located in the unsaturated zone of agri-cultural soils is very low due to a limited effective flow collecting area(Scf). In this study, the dynamicsof soil water movement and salt transport were simulated using the calibrated models and parameters forHYDRUS-2D/3D in order to investigate two possible methods for improvement of ameliorating saline soilsin cases where drainage pipes are located well above the groundwater table. The first improvement methodattempted to enlarge Scfby laying seepage-proof material(SPM) underneath the SSPs. The effect of SPMwidth(Lf) and distance between SSPs was evaluated. Simulations continued until the salinity of the 0~40and 40~60 cm soil layers was less than 3.0 and 6.0 g/kg, respectively, levels believed to allow successfulcotton cultivation. Compared to the treatment without SPM, the salt discharge ratio(SDR) and the wateruse efficiency for salt discharge(WUESD) were enhanced from 11.9% and 1.86 kg/m3 to a maximum of32.1% and 3.15 kg/m3, respectively, when a SPM was present. While, in general, increasing LfenhancedWUESD,considerations of installation costs suggest an optimal practical Lfof between 20 and 100 cm. TheSDR and WUESD were further enhanced by decreasing the space interval between pipes from 500 cm,typi-cally found in commercial fields, to 200 cm. In additional simulations, the SSP was used to both supplywater and discharge leachate, eliminating the need for wetting of the entire profile and potentially enhanc-ing salt discharge efficiency. Results showed that the approach had limited practical value as very little saltcould be discharged through the SSP,and the maximum WUESD was not more than 0.6 kg/m3 even whena SPM was laid beneath SSP and the space interval between pipes was narrowed to 200 cm. The modelingapproach presented should be useful in evaluation of further approaches using SSP to improve reclamationof saline agricultural soils where drainage of saturated zones is unpractical.
引文
[1]李显溦,左强,石建初,等.新疆膜下滴灌棉田暗管排盐的数值模拟与分析I:模型与参数验证[J].水利学报,2016,47(4):537-544.
    [2]Singh R,Helmers M J,Crumpton W G,et al.Predicting effects of drainage water management in Iowa's subsurface drained landscapes[J].Agricultural Water Management,2007,92(3):162-170.
    [3]Luo W,Sands G R,Youssef M,et al.Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII[J].Agricultural Water Management,2010,97(3):389-398.
    [4]周明耀,陈朝如,毛春生,等.滨海盐土地区稻田暗管排水效果试验研究[J].农业工程学报,2000,16(2):54-57.
    [5]罗岩,王新辉,沈永平,等.新疆内陆干旱区水资源的可持续利用[J].冰川冻土,2006,28(2):283-287.
    [6]Liu M,Yang J,Li X,et al.Effects of Irrigation Water Quality and Drip Tape Arrangement on Soil Salinity,Soil Moisture Distribution,and Cotton Yield(Gossypium hirsutum L.)Under Mulched Drip Irrigation in Xinjiang,China[J].Journal of Integrative Agriculture,2012,11(3):502-511.
    [7]Siyal A A,Skaggs T H.Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation[J].Agricultural Water Management,2009,96(6):893-904.
    [8]Siyal A A,van Genuchten M T,Skaggs T H.Solute transport in a loamy soil under subsurface porous clay pipe irrigation[J].Agricultural Water Management,2013,121:73-80.
    [9]Castanheira P J N,Serralheiro R P.Impact of mole drains on salinity of a vertisoil under irrigation[J].Biosystems Engineering,2010,105(1):25-33.
    [10]周金龙,董新光.内陆干旱区潜在蒸发量的计算[J].灌溉排水,2002,21(2):21-24.
    [11]张明炷,黎庆淮,石秀兰.土壤学与农作学[M].北京:中国水利水电出版社,2009.
    [12]刘梅先,杨劲松,李晓明,等.滴灌模式对棉花根系分布和水分利用效率的影响[J].农业工程学报,2012,28(S1):98-105.
    [13]Zuo Q,Shi J,Li Y,Zhang R.Root length density and water uptake distributions of winter wheat under sub-irrigation[J].Plant and Soil,2006,285(1-2):45-55.
    [14]Ibrakhimov M,Martius C,Lamers JPA,et al.The dynamics of groundwater table and salinity over 17 years in Khorezm[J].Agricultural Water Management,2011,101(1):52-61.
    [15]Grazhdani S,Jacquin F,Sulce S.Effect of subsurface drainage on nutrient pollution of surface waters in south eastern Albania[J].Science of the Total Environment,1996,191(1/2):15-21.
    [16]王丽丽,胡小安,伟利国,等.大型开沟铺管机自动控制系统的研制[J].机电工程,2012,29(12):1448-1452.
    [17]武广伟,付卫强,董建军,等.1KY-40型液压驱动农田水渠开沟机设计与试验[J].农业机械学报,2014,45(S1):302-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700