耕地地力对化肥养分利用的影响机制及其调控研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Impact Mechanisms of Cultivated Land Fertility on Nutrient Use of Chemical Fertilizers and Their Regulation
  • 作者:孙波 ; 陆雅海 ; 张旭东 ; 卢升高 ; 韦革宏 ; 杨劲松 ; 朱安宁 ; 刘满强 ; 段英华
  • 英文作者:SUN Bo;LU Yahai;ZHANG Xudong;LU Shenggao;WEI Gehong;YANG Jinsong;ZHU Anning;LIU Manqiang;DUAN Yinghua;State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences;Key Laboratory of Arable Land Conservation,Ministry of Agriculture of the People's Republic of China;College of Urban and Environmental Sciences,Peking University;Institute of Applied Ecology,Chinese Academy of Sciences;College of Resources and Environmental Sciences,Zhejiang University;College of Life Sciences,Northwest Agriculture and Forestry University;College of Resources and Environmental Sciences,Nanjing Agricultural University;Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences;
  • 关键词:耕地地力 ; 土壤障碍 ; 肥沃耕层 ; 养分蓄纳供应 ; 养分利用率 ; 调控模式
  • 英文关键词:Cultivated land fertility;;Soil obstacle;;Fertile soil cultivated layer;;Nutrient storage and supply;;Nutrient use efficiency;;Regulatory model
  • 中文刊名:TURA
  • 英文刊名:Soils
  • 机构:土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所);农业部耕地保育重点实验室;北京大学城市与环境学院;中国科学院沈阳应用生态研究所;浙江大学环境与资源学院;西北农林科技大学生命科学学院;南京农业大学资源与环境科学学院;中国农业科学院农业资源与农业区划研究所;
  • 出版日期:2017-04-15
  • 出版单位:土壤
  • 年:2017
  • 期:v.49;No.288
  • 基金:国家重点研发计划项目(2016YFD0200300)资助
  • 语种:中文;
  • 页:TURA201702001
  • 页数:8
  • CN:02
  • ISSN:32-1118/P
  • 分类号:4-11
摘要
耕地地力影响了化肥养分的利用效率,是调控养分利用率的基础途径。本文概述了耕地土壤障碍对养分利用的制约机制、耕地地力培育对养分利用的促进机制、提高养分资源利用效率的耕地培肥模式3个方面的研究进展。针对我国主要的耕地土壤–作物系统,提高化肥养分利用率需要解决4个地力调控方面的关键问题:地力与养分利用率关系及其时空变化规律、土壤障碍制约养分高效蓄积转化机制与消减原理、地力培肥促进根系–土壤–微生物互作提高养分耦合利用机制及调控途径、肥沃耕层构建与生物功能提升对养分蓄纳供应的协同驱动增效机制与调控理论。本文提出基于多时空尺度综合研究,建立稳定提升土壤功能–加速养分循环利用的"双核驱动"地力综合管理理论,在不同区域构建并应用化肥减施增效的耕地地力综合管理模式,实现耕地大面积均衡减施化肥的目标。
        The cultivated land fertility affects the nutrient utilization of chemical fertilizers,which is the basic pathway to regulate the nutrient use efficiency(NUE).The research progresses in this field were reviewed from three aspects:the restriction mechanism of soil constraint factors on nutrient utilization,the promotion mechanism of soil fertility incubation on nutrient utilization,and the models for enhancing NUE by improving cultivated land fertility.For the main types of soil-crop systems,four scientific problems need to be clarified in terms of regulating NUE by fostering cultivated land fertility:temporal and spatial variation of correlation between soil fertility and NUE,the mechanisms for soil obstacles to restrict nutrient accumulation and transformation and its removing principle,the mechanisms and regulatory pathways for fertility incubation to promote root-soil-microbe interaction and the synergetic utilization of nutrients,the mechanisms and theories for coupling fertile cultivated layer construction and soil biological function improvement to enhance nutrient storage and supplies.Based on the comprehensive research at multi-temporal and spatial scales,the "dual core driven" soil fertility improvement theory should be developed,which combines the improvement of soil storage-release function and acceleration of nutrient recycling use.Finally the integrated cultivated land fertility management models should be established and applied to enhance NUE of chemical fertilizers in different regions,which could promote the fulfillment of the goal to reduce chemical fertilizer application in cultivated land at the regional scale.
引文
[1]郝锐敏.农业部首度发布化肥农药利用率数据[N].农资导报,2015-12-11.http://www.nzdb.com.cn/bencandy.php?fid=26&id=201445
    [2]汤勇华,黄耀.中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征[J].农业环境科学学报,2009,28(5):1070–1078
    [3]Cassman K G.Ecological intensification of cereal production systems:Yield potential,soil quality,and precision agriculture[J].Proceedings of the National Academy of Sciences,1999,96(11):5952–5959
    [4]Ahmad N,Hassan F U,Belford R K.Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat(Triticum aestivum):I.Compaction[J].Field Crops Research,2009,110(1):54–60
    [5]Hulugalle N R,Weaver T B,Finlay L A,et al.Soil properties and crop yields in a dryland Vertisol sown with cotton-based crop rotations[J].Soil and Tillage Research,2007,93(2):356–369
    [6]Schroder J L,Zhang H,Girma K,et al.Soil acidification from long-term use of nitrogen fertilizers on winter wheat[J].Soil Science Society of America Journal,2011,75(3):957–964
    [7]Paul D,Lade H.Plant-growth-promoting rhizobacteria to improve crop growth in saline soils:A review[J].Agronomy for Sustainable Development,2014,34(4):737–752
    [8]Sakadevan K,Nguyen M L.Extent,impact,and response to soil and water salinity in arid and semiarid regions[J].Advances in Agronomy,2010,109(109):55–74
    [9]?im?nek J,Jacques D,?ejna M,et al.The HP2 Program for HYDRUS(2D/3D).A Coupled Code for Simulating TwoDimensional Variably-Saturated Water Flow,Head Transport,Solute Transport and Biogeochemistry in Porous Media(HYDRUS+PHREEQC+2D)[CP].Version 1.0.PC Progress,Prague,Czech Republic,2011:1–78
    [10]Lakshmanan V,Selvaraj G,Bais H P.Functional soil microbiome:belowground solutions to an aboveground problem[J].Plant Physiology,2014,166(2):689–700
    [11]Mendes R,Kruijt M,De Bruijn I,et al.Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J].Science,2011,332(6033):1097–1100
    [12]Wright A L.Phosphorus sequestration in soil aggregates after long-term tillage and cropping[J].Soil and Tillage Research,2009,103(2):406–411
    [13]Krause U,Koch H J,Maerlaender B.Soil properties affecting yield formation in sugar beet under ridge and flat cultivation[J].European Journal of Agronomy,2009,31(1):20–28
    [14]Vogel C,Mueller C W,H?schen C,et al.Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils[J].Nature Communications,2014,5(1):149–168
    [15]Schmidt M W I,Torn M S,Abiven S,et al.Persistence of soil organic matter as an ecosystem property[J].Nature,2011,478(7367):49–56
    [16]Six J,Paustian K.Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J].Soil Biology and Biochemistry,2014,68(1):A4–A9
    [17]Lehmann J,Kleber M.The contentious nature of soil organic matter[J].Nature,2015,528(7580):60–68
    [18]Kuzyakov Y,Blagodatskaya E.Microbial hotspots and hot moments in soil:Concept&review[J].Soil Biology and Biochemistry,2015,83:184–199
    [19]Philippot L,Raaijmakers J M,Lemanceau P,et al.Going back to the roots:the microbial ecology of the rhizosphere[J].Nature Reviews Microbiology,2013,11(11):789–799
    [20]Lopes A R,Manaia C M,Nunes O C.Bacterial community variations in an alfalfa-rice rotation system revealed by 16S r RNA gene 454-pyrosequencing[J].FEMS Microbiology Ecology,2014,87(3):650–663
    [21]Shi S J,Nuccio E E,Shi Z J,et al.The interconnected rhizosphere:High network complexity dominates rhizosphere assemblages[J].Ecology Letters,2016,19(8):926–936
    [22]Francioli D,Schulz E,Lentendu G,et al.Mineral vs.organic amendments:Microbial community structure,activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies[J].Frontiers in Microbiology,2016,7:1446
    [23]M?der P,Fliessbach A,Dubois D,et al.Soil fertility and biodiversity in organic farming[J].Science,2002,296:1694–1697
    [24]Pittelkow C M,Liang X,Linquist B A,et al.Productivity limits and potentials of the principles of conservation agriculture[J].Nature,2015,517:365–368
    [25]Daraghmeh O A,Jensen J R,Petersen C T.Near-saturated hydraulic properties in the surface layer of a sandy loam soil under conventional and reduced tillage[J].Soil Science Society of America Journal,2008,72(6):1728–1737
    [26]Gardner J B,Drinkwater L E.The fate of nitrogen in grain cropping systems:A meta-analysis of 15N field experiments[J].Ecological Applications,2009,19(8):2167–2184
    [27]Tittonell P,Giller K E.When yield gaps are poverty traps:The paradigm of ecological intensification in African smallholder agriculture[J].Field Crops Research,2013,143(1):76–90
    [28]Maqubela M P,Mnkeni P N S,Issa O M,et al.Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure,fertility,and maize growth[J].Plant and Soil,2009,315(1/2):79–92
    [29]Wagg C,Bender S F,Widmer F,et al.Soil biodiversity and soil community composition determine ecosystem multifunctionality[J].Proceedings of the National Academy of Sciences,2014,111(14):5266–5270
    [30]Shen R P,Sun B,Zhao Q G.Spatial and temporal variability of N,P and K balances for agroecosystems in China[J].Pedosphere,2005,15(3):347–355
    [31]李书田,金继运.中国不同区域农田养分输入、输出与平衡[J].中国农业科学,2011,44(20):4207–4229
    [32]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915–924
    [33]杨林章,孙波.中国农田生态系统养分循环和平衡及其管理[M].北京:科学出版社,2008:1–310
    [34]段武德,陈印军,翟勇,等.中国耕地质量调控技术集成研究[M].北京:中国农业科学技术出版社,2011:1–337
    [35]曹志洪,周健民.中国土壤质量[M].北京:科学出版社,2008:1–709
    [36]Wang X,Sun B,Mao J,et al.Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions[J].Environmental Science and Technology,2012,46:7159–7165
    [37]Shu X,Zhu A N,Zhang J B,et al.Changes in soil organic carbon and aggregate stability after conversion to conservation tillage for seven years in the Huang-Huai-Hai Plain of China[J].Journal of Integrative Agriculture,2015,14(6):1202–1211
    [38]Yu H,Ding W,Chen Z,et al.Accumulation of organic C components in soil and aggregates[J].Scientific Reports,2015,5:13804
    [39]宋春,韩晓增,王凤菊,等.长期不同施肥条件下黑土水稳性团聚体中磷的分布及其有效性[J].中国生态农业学报,2010,18(2):272–276.
    [40]王仁杰,强久次仁,薛彦飞,等.长期有机无机肥配施改变了塿土团聚体及其有机和无机碳分布[J].中国农业科学,2015,48(23):4678–4689
    [41]邢旭明,王红梅,安婷婷,等.长期施肥对棕壤团聚体组成及其主要养分赋存的影响[J].水土保持学报,2015,(2):67–273
    [42]郭菊花,陈小云,刘满强,等.不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响[J].土壤,2007,39(5):787–793
    [43]陈晓芬,李忠佩,刘明,等.不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J].中国农业科学,2013,46(5):950–960
    [44]李文军,杨基峰,彭保发,等.施肥对洞庭湖平原水稻土团聚体特征及其有机碳分布的影响[J].中国农业科学,2014,47(20):4007–4015
    [45]刘震,徐明岗,段英华,等.长期不同施肥下黑土和红壤团聚体氮库分布特征[J].植物营养与肥料学报,2013,19(6):1386–1392
    [46]徐明岗,张文菊,黄少敏.中国土壤肥力演变(第二版)[M].北京:中国农业科学技术出版社,2015:1–1124
    [47]Duan Y,Xu M,Gao S,et al.Nitrogen use efficiency in a wheat–corn cropping system from 15 years of manure and fertilizer applications[J].Field Crops Research,2014,157(2):47–56
    [48]全国农业技术推广服务中心,中国农科院农业资源与区划所.耕地质量演变趋势研究——国家级耕地土壤监测数据整编[M].北京:中国农业科学技术出版,2008:1–409
    [49]Li H,Chang J,Liu P,et al.Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J].Environmental Microbiology,2014,17(5):1533–1547
    [50]Su J Q,Ding L J,Xue K,et al.Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil[J].Molecular Ecolog,2015,24(1):136–150
    [51]Gao S J,Zhang R G,Cao W D,et al.Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China[J].Journal of Integrative Agriculture,2015,14(12):2512–2520
    [52]Jiang Y,Liang Y,Li C,et al.Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia[J].Soil Biology and Biochemsitry,2016,95:250–261
    [53]Fan F,Yin C,Tang Y,et al.Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP[J].Soil Biology and Biochemistry,2014,70:12–21
    [54]Zhang S,Li Q,LüY,et al.Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems[J].Soil Biology and Biochemistry,2013,62:147–156.
    [55]Sun B,Wan X,Wang F,et al.Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition[J].Applied Environmental Microbiology,2013,79(11):3327–3335
    [56]Sun R,Zhang X X,Guo X,et al.Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J].Soil Biology and Biochemistry,2015,88:9–18
    [57]Shen J P,Zhang L M,Zhu Y G,et al.Abundance and composition of ammonia-oxidizing bacteria and ammoniaoxidizing archaea communities of an alkaline sandy loam[J].Environmental Microbiology,2008,10(6):1601–1611
    [58]Lin X,Feng Y,Zhang H,et al.Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454pyrosequencing[J].Environmental Science and Technology,2012,46(11):5764–5771
    [59]Feng Y,Chen R,Hu J,et al.Bacillus asahii comes to the fore in organic manure fertilized alkaline soils[J].Soil Biology and Biochemistry,2015,81:186–194
    [60]Jiang Y,Sun B,Jin C,et al.Soil aggregate stratification of nematodes and microbial communities affects metabolic quotient in an acid soil[J].Soil Biology and Biochemistry,2013,60:1–9
    [61]Jiang Y,Jin C,Sun B.Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil[J].Environmental Microbiology,2014,16(10):3083–3094
    [62]Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008–1010
    [63]徐仁扣.酸化红壤的修复原理与技术[M].北京:科学出版社,2013:1–274
    [64]杨劲松,姚荣江.我国盐碱地治理与农业高效利用[J].中国科学院院刊,2015,30(增刊):162–170
    [65]沈其荣,杨兴明,黄启为,等.一种能防除连作作物枯萎病的拮抗菌及其微生物有机肥料[P].中国:ZL200510122898.0,2007
    [66]韩晓增,邹文秀,王凤仙,等.黑土肥沃耕层构建效应[J].应用生态学报,2009,20(12):2996–3002
    [67]赵金花,张丛志,张佳宝.激发式秸秆深还对土壤养分和冬小麦产量的影响[J].土壤学报,2016,53(2):438–449
    [68]南雄雄,游东海,田霄鸿,等.关中平原农田作物秸秆还田对土壤有机碳和作物产量的影响[J].华北农学报,2011,26(5):222–229
    [69]陈辉林,田霄鸿,王晓峰,等.不同栽培模式对渭北旱塬区冬小麦生长期间土壤水分、温度及产量的影响[J].生态学报,2010,30(9):2424–2433
    [70]孙波.红壤退化阻控与生态修复[M].北京:科学出版社,2011:1–466
    [71]朱波,陈实,游祥,等.紫色土退化旱地的肥力恢复与重建[J].土壤学报,2002,39(5):743–749
    [72]曾希柏,张佳宝,魏朝富,等.中国低产田状况及改良策略[J].土壤学报,2014(4):675–682
    [73]张月平,张炳宁,田有国,等.县域耕地资源管理信息系统开发与应用[J].土壤通报,2013(6):1308–1313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700