砂壤土下滴灌毛白杨幼林土壤水分运移规律与模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Patterns of Soil Water Movement in Drip-Irrigated Young Populus tomentosa Plantations on Sandy Loam Soil and Their Simulation
  • 作者:李豆豆 ; 席本野 ; 唐连峰 ; 冯超 ; 贺曰林 ; 张亚雄 ; 刘龙龙 ; 刘金强 ; 贾黎明
  • 英文作者:Li Doudou;Xi Benye;Tang Lianfeng;Feng Chao;He Yuelin;Zhang Yaxiong;Liu Longlong;Liu Jinqiang;Jia Liming;Key Laboratory of Silviculture and Conservation of Ministry of Education,Beijing Forestry University;State-Owned Jiucheng Forest Farm in Gaotang County;Hunan Provincial Institute of Agriculture,Forestry and Industry Inventory and Planning;
  • 关键词:毛白杨 ; 滴灌 ; 土壤水分运移 ; HYDRUS ; 湿润锋 ; 土壤水势 ; 土壤含水率 ; 土壤湿润体
  • 英文关键词:Populus tomentosa;;drip irrigation;;soil water movement;;HYDRUS;;wetting front;;soil water potential;;soil water content;;the wetting soil volume
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:北京林业大学省部共建森林培育与保护教育部重点实验室;高唐县国有旧城林场;湖南省农林工业勘察设计研究总院;
  • 出版日期:2018-12-15
  • 出版单位:林业科学
  • 年:2018
  • 期:v.54
  • 基金:国家自然科学基金项目(31400532; 31670625);; “十二五”国家科技支撑计划资助(2015BAD09B02);; 国家重点研发计划课题(2016YFD0600403)
  • 语种:中文;
  • 页:LYKE201812019
  • 页数:12
  • CN:12
  • ISSN:11-1908/S
  • 分类号:160-171
摘要
【目的】明确滴灌下林地土壤水分运移规律,以期为林分精准滴灌策略制定提供数据支撑和理论依据。【方法】以砂壤土下进行地表滴灌的2年生毛白杨人工林为研究对象,通过田间试验研究灌水及水分再分布过程中土壤水势(ψ_s)、湿润锋和含水率(θ)的动态变化规律,然后利用田间实测数据评估HYDRUS-2D/3D模拟土壤水分短期运动的精度和可行性,并运用验证后的模型对不同初始土壤含水率(θ_i)下的湿润锋运移进行模拟。【结果】灌溉过程中ψ_s、湿润锋水平和垂直运移距离、土壤湿润体内θ随灌水时长的变化可分别用Logistic函数(R~2=0.99)、对数(R~2=0.99)、幂函数(R~2=0.82)和多项式(R~2=0.99)函数描述;停灌时,湿润锋水平和垂直运移距离分别达到22.9和37.3 cm,湿润体内ψ_s和θ较灌溉开始时分别提高61.6%和30.9%,ψ_s在停灌后约120 h恢复至灌溉起始水平;湿润锋水平和垂直运移距离模拟值与实测值的平均偏差分别为1.3和4.5 cm,停灌时及水分再分布过程中HYDRUS-2D/3D模拟θ的平均RMSE和RMAE分别为0.021 cm~3·cm~(-3)和9.7%;利用HYDRUS-2D/3D模拟,得到试验地不同干旱程度时(土壤水分有效性的40%,60%,73%和80%)θ_i越高,湿润锋的水平和垂直运移均越大,且不同θ_i下的水平运移均略小于其垂直运移。【结论】HYDRUS-2D/3D可用于模拟砂壤土下地表滴灌毛白杨幼林的短期土壤水分动态。不同θ_i下湿润锋水平和垂直运移距离随灌溉时长的变化图,可为砂壤土上毛白杨及相似树种人工林的合理滴灌时长的确定提供参考。
        【Objective】 Understanding the patterns of soil water movement under drip irrigation can provide supporting data and theoretical basis for developing precise drip irrigation strategies.【Method】 A two-year-old Populus tomentosa plantation under surface drip irrigation on sandy loam soil was selected to measure the dynamics of soil water potential(ψ_s), wetting front and soil water content(θ) during irrigation and water redistribution periods. Then, the observed data in the field were used to evaluate the accuracy and feasibility of the HYDRUS-2 D/3 D model for simulating the short-term soil water movement. Besides, the validated model was used to simulate the dynamics of wetting front under different initial soil water content(θ_i).【Result】 During irrigation, the variation of ψs, horizontal and vertical movement distances of the wetting front, and θ within the wetting volume with irrigation duration can be described by the logistic function(R~2 = 0.99), the logarithm function(R~2 = 0.99), the power function(R~2 = 0.82), and the polynomial function(R~2 = 0.99), respectively. At the end of irrigation, the horizontal and vertical movement distances of the wetting front reached 22.9 and 37.3 cm, respectively. The ψ_s and θ within the soil wetting volume were 61.6% and 30.9% higher than those at the start of the irrigation, respectively, but the ψ_s decreased to its initial level about 120 hours after the stop of irrigation. The average deviations of the horizontal and vertical wetting radius between the simulated and measured values were 1.3 and 4.5 cm, respectively. The mean RMSE and RMAE of HYDRUS-2 D/3 D for simulating θ at the end of irrigation and during water redistribution were 0.021 cm~3·cm~(-3) and 9.7%, respectively. The movement distances of wetting front in the experimental plantation under various soil drought degrees(soil water availabilities were 40%, 60%, 73%, and 80%) were obtained through scenarios simulations using HYDRUS-2 D/3 D. And it was found that the wetting front moved further under higher θ_i, and the movement distance of the wetting front was always smaller in the horizontal direction than in the vertical direction under different θ_i.【Conclusion】 Consequently, HYDRUS-2 D/3 D can be used to well simulate the short-term soil water movement in drip-irrigated young P. tomentosa plantations in sandy loam soil. In addition, the constructed figure(describes the variations of the horizontal and vertical soil wetting distances with the irrigation duration) can be used to determine the reasonable irrigation duration for the plantations of P. tomentosa and other tree species in sandy loam soil.
引文
傅建平, 兰再平, 孙尚伟, 等. 2013. 滴灌条件下杨树人工林土壤的水分运移. 林业科学, 49(6): 25-29.(Fu J P, Lan Z P, Sun S W, et al. 2013. Soil water movement in a poplar plantation under drip irrigation. Scientia Silvae Sinicae, 49(6): 25-29. [in Chinese])
    付琳. 1983. 滴灌时的土壤浸润状况. 灌溉排水, 2(3): 36-45.(Fu L. 1983. Situation of the wetted soil in drip irrigation. Journal of Irrigation and Drainag, 2(3): 36-45. [in Chinese])
    黄凯, 蔡德所, 潘伟, 等. 2015. 广西赤红壤甘蔗田间滴灌带合理布设参数确定. 农业工程学报, 31(11): 136-143.(Huang K, Cai D S, Pan W, et al. 2015. Determination of drip tapes layout parameters for irrigation of sugarcane in latosolic red soil in Guangxi Autonomous Region. Transactions of the Chinese Society of Agricultural Engineering, 31(11): 136-143. [in Chinese])
    蒋桂英, 魏建军, 刘萍, 等. 2012. 滴灌春小麦生长发育与水分利用效率的研究. 干旱地区农业研究, 30(6): 50-54.(Jiang G Y, Wei J J, Liu P, et al. 2012. Spring wheat growth and water use efficiency under drip irrigation. Agricultural Research in the Arid Areas, 30(6): 50-54. [in Chinese])
    李久生, 栗岩峰, 王军,等. 2016. 微灌在中国: 历史, 现状和未来. 水利学报, 47(3): 372-381.(Li J S, Li Y F, Wang J, et al. 2016. Microirrigation in China: history, current situation and prospects. Journal of Hydraulic Engineering, 47(3): 372-381. [in Chinese])
    李久生, 张建君, 饶敏杰. 2005. 滴灌施肥灌溉的水氮运移数学模拟及试验验证. 水利学报, 36(8): 932-938.(Li J S, Zhang J J, Rao M J. 2005. Model verification of water and nitrate transport from a surface point source. Journal of Hydraulic Engineering, 36(8): 932-938. [in Chinese])
    李明思, 康绍忠, 孙海燕. 2006. 点源滴灌滴头流量与湿润体关系研究. 农业工程学报, 22(4):32-35.(Li M S, Kang S Z, Sun H Y. 2006. Relationships between dripper discharge and soil wetting pattern for drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 22(4):32-35. [in Chinese])
    聂紫瑾, 陈源泉, 张建省, 等. 2013. 黑龙港流域不同滴灌制度下的冬小麦产量和水分利用效率. 作物学报, 39(9): 1687-1692.(Nie Z J, Chen Y Q, Zhang J S, et al. 2013. Effects of drip irrigation patterns on wheat yield and water use efficiency in Heilonggang region. Acta Agronomica Sinica, 39(9): 1687-1692. [in Chinese])
    席本野, 贾黎明, 王烨, 等. 2011. 地下滴灌条件下三倍体毛白杨根区土壤水分动态模拟. 应用生态学报, 22(1): 21-28.(Xi B Y, Jia L M, Wang Y, et al. 2011. Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation. Chinese Journal of Applied Ecology, 22(1): 21-28. [in Chinese])
    王治军, 雒天峰. 2008. 滴灌条件下侧柏林地根区土壤水分运动规律研究. 干旱地区农业研究, 26(4): 13-16.(Wang Z J, Luo T F. 2008. Soil water movement under drip irrigation of proscenia in Loess. Agricultural Research in the Arid Areas, 26(4): 13-16. [in Chinese])
    王振华, 郑旭荣, 任杰, 等. 2007. 灌水频率对地下滴灌线源入渗土壤水分运动规律影响的试验研究. 水利学报, (s1):299-302.(Wang Z H, Zheng X R, Ren J, et al. 2007. Study on effects of irrigation frequency on soil water-transport of line source permeation under subsurface drip irrigation. Journal of Hydraulic Engineering, (s1):299-302. [in Chinese])
    王珍, 李久生, 栗岩峰. 2013. 土壤空间变异对滴灌水氮淋失风险影响的模拟评估. 水利学报, 44(3): 302-311.(Wang Z, Li J S, Li Y F. 2013. Assessing the influence of soil spatial variability on water leakage and nitrate leaching under drip irrigation through simulation. Journal of Hydraulic Engineering, 44(3): 302-311. [in Chinese])
    余根坚, 黄介生, 高占义. 2013. 基于HYDRUS模型不同灌水模式下土壤水盐运移模拟. 水利学报, 44(7):826-834.(Yu G J, Huang J S, Gao Z Y. 2013. Study on water and salt transportation of different irrigation modes by the simulation of HYDRUS model. Journal of Hydraulic Engineering, 44(7):826-834. [in Chinese])
    赵晔, 李明思. 2014. 点源滴灌地表积水区半径运移模型分析. 节水灌溉, (12):16-19.(Zhao Y, Li M S. 2014. Analysis of soil surface ponding radius movement model under point source drip irrigation. Water Saving Irrigation, (12):16-19. [in Chinese])
    郑世锴. 2006. 杨树丰产栽培. 北京: 金盾出版社.(Zheng S K. 2006. High yield cultivation of poplar. Beijing: Golden Shield Press. [in Chinese])
    Barragn J, Bralts V, Wu I P. 2006. Assessment of emission uniformity for micro-irrigation design. Biosystems Engineering, 93 (1):89-97.
    Bhunia S R, Verma I M, Sahu M P,et al. 2015. Effect of drip irrigation and bioregulators on yield, economics and water use of fenugreek (Trigonella foenum-graecum). Journal of Spices and Aromatic Crops, 24(2): 102-105
    Bufon V B, Lascano R J, Bednarz C, et al. 2012. Soil water content on drip irrigated cotton: comparison of measured and simulated values obtained with the Hydrus 2-D model. Irrigation Science, 30(4):259-273.
    Charles M B. 2004. Rapid field evaluation of drip and microspray distribution uniformity. Irrigation and Drainage Systems, 18 (4):275-297.
    Dabach S, Lazarovitch N, Šimunek J, et al. 2011. Numerical investigation of irrigation scheduling based on soil water status. Irrigation Science, 31(1): 27-36.
    Leterme B, Mallants D, Jacques D. 2012. Estimation of future groundwater recharge using climatic analogues and HYDRUS-1D. Hydrology and Earth System Sciences, 16(8): 2485-2497.
    McClymont L, Goodwin I. 2014. Effects of wetted soil volume on young pear trees. Acta Horticulturae, 1130:479-484.
    Nagli? B, Kechavarzi C, Coulon F, et al. 2014. Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrigation Science, 32(6):421-436.
    Nakhaei M, ?im?nek J. 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. Journal of Hydrology and Hydromechanics, 62(1):7-15.
    Provenzano G. 2007. Using HYDRUS-2D simulation model to evaluate wetted soil volume in subsurface drip irrigation systems. Journal of Irrigation and Drainage Engineering, 133(4):342-349.
    Qin H P, Peng Y N, Tang Q L, et al. 2016. A HYDRUS model for irrigation management of green roofs with a water storage layer. Ecological Engineering, 95(2016):399-408.
    Schaap M G, Leiji F J, Van Genuchten M T. 2001. ROSETTA: a computer program for estimating soil hydraulic properties with hierarchical pedotransfer functions. Journal of Hydrology, 251(3/4):163-176.
    ?im?nek J, Van Genuchten M T, Šejna M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7(9):587-600.
    ?im?nek J, Van Genuchten M T, Šejna M. 2012. HYDRUS: Model use, calibration, and validation. Transactions of the Asabe, 55(4):1561-1574.
    Siyal A A, Skaggs T H. 2009. Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation. Agricultural Water Management, 96(6): 893-904.
    Skaggs T H, Trout T J, ?im?nek J, et al. 2004. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. Journal of Irrigation & Drainage Engineering, 130(4):304-310.
    Wang F X, Kang Y, Liu S P. 2006. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agricultural Water Management, 79(3):248-264.
    Xi B Y, Li G D, Bloomberg M, et al. 2014. The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain. Australian Forestry, 77(3/4):159-167.
    Xi B Y, Bloomberg M, Watt M S, et al. 2016. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 176(2016):243-254.
    Zeng W, Xu C, Wu J, et al. 2014. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. Journal of Arid Land, 6(1): 44-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700