基于Agro-IBIS模型的新疆农田生态系统净初级生产力时空动态及其对气候变化的响应模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Net Primary Productivity of Farmland Ecosystem in Xinjiang: The Spatio-temporal Dynamics and Its Response to Climate Change Based on Agro-IBIS Model
  • 作者:吐热尼古丽·阿木提 ; 罗格平 ; 殷刚
  • 英文作者:Tureniguli Amuti;Luo Geping;Yin Gang;School of Geographic Science and Tourism, Xinjiang Normal University;State Key Laboratory of Desert and Oasis Ecology/Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences;Institute of Arid Ecology and Environment, Xinjiang University;
  • 关键词:Agro-IBIS ; 农田生态系统 ; 新疆 ; NPP
  • 英文关键词:Agro-IBIS;;farmland ecosystem;;Xinjiang;;NPP
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:新疆师范大学地理科学与旅游学院;中国科学院新疆生态与地理研究所/荒漠与绿洲生态国家重点实验室;新疆大学干旱生态环境研究所;
  • 出版日期:2018-11-30
  • 出版单位:中国农学通报
  • 年:2018
  • 期:v.34;No.505
  • 基金:国家自然科学基金“天山北坡植被净初级生产力及对气候和土地利用/覆被变化响应的模拟与实证研究,基于水、碳循序和能量的绿洲稳定性内涵分析”(41461023、U1303382);; 新疆师范大学博士科研启动基金“气候变化背景下新疆农田生态系统碳动态变化研究”(XJNUBS1526)
  • 语种:中文;
  • 页:ZNTB201834015
  • 页数:8
  • CN:34
  • ISSN:11-1984/S
  • 分类号:97-104
摘要
为系统地了解干旱区农田生态系统碳动态及其对气候变化的响应,笔者利用基于过程的新型全球动态植被模型(Agro-IBIS)模拟了1979—2009年间新疆农田生态系统净初级生产力(NPP)的时空变化,并通过相关性分析揭示农田NPP对不同气候因子和CO_2浓度变化的响应。结果表明,1979—2009年新疆农田NPP平均值为723.78 g C/(m~2·a),总碳储量约为237.15 Tg C,净农田生态系统碳交换量(NEE)年平均值为-63.36 g C/(m~2·a),并总体上呈碳汇特征。对新疆农田NPP的空间变化而言,除了在天山地区绿洲农田NPP出现较小幅度的减少外,总体变化呈逐步增加趋势。31年来,新疆农田年度NPP总量与年均气温的相关性比,与降水量的相关性较高。说明灌溉对新疆干旱区绿洲田生产力的影响远大于自然降水。经验证,Agro-IBIS模型对于新疆农田生态系统碳收支的模拟结果合理,可以为中国西北干旱区农田生态系统固碳潜力的模拟预测和科学制定区域碳管理政策提供科学依据。
        To systematically understand the carbon dynamics of farmland ecosystem in arid area and its response to climate change,the authors simulated the spatio-temporal changes of net primary productivity(NPP)of farmland ecosystem in Xinjiang during 1979-2009 by using a new process-based dynamic global vegetation model(Agro-IBIS),and revealed the response of farmland NPP to the changes of different climatic factors and CO_2 concentration through the correlation analysis.The results showed that:the average NPP of farmland in Xinjiang was 723.78 g·a),while the average total carbon storage was 237.15 Tg C,the average annual net exchange of carbon in agroecosystem(NEE)was-63.36 g·a),overall playing as carbon sink during 1979-2009.In terms of the spatial variation of farmland NPP in Xinjiang,the overall change showed a gradual increasing trend except for a slight decrease of NPP in oasis farmland of the Tianshan Mountains.In the 31 years,the correlation between the total annual NPP and the average annual temperature was higher than that between the total annual NPP and the average annual precipitation in Xinjiang farmland,indicating that irrigation had much more effects than natural precipitation on oasis agricultural productivity in arid areas of Xinjiang.It was verified that the results of Agro-IBIS model were reasonable in simulation of the carbon budget of farmland ecosystem in Xinjiang,which could provide a scientific basis for the simulation and prediction of potential carbon sequestration of farmland ecosystem in the arid area of northwestern China and the scientific formulation of regional carbon management policies.
引文
[1] Houghton R A, Hackler J L. Sources and sinks of carbon from landuse change in China[J]. Globaol Biochemical cycles,2003,17(2):1-3.
    [2] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304:1623-1627.
    [3] Stewart C E, Paustian K, Conant R T, et al. Soil C saturation:Concept,evidence, and evaluation[J]. Biogeochemistry,2007,86:19-31.
    [4] Houghton R A, Hackler J L. Sources and sinks of carbon from landuse change in China[J]. Global Biochemical Cycles,2003,17(2):1034.
    [5]朴世龙,方精云,贺金生,等.中国草地植被生物生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
    [6] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,2001,292(5525):2320-2322.
    [7]周才平,欧阳华,王勤学,等.青藏高原主要生态系统净初级生产力的估算[J].地理学报,2004,59(1):74-79.
    [8]王鹏程,邢乐杰,肖文发,等.三峡库区森林生态系统有机碳密度及碳储量[J].生态学报,2009,29(1):97-107.
    [9]王新闯,齐光,于大炮,等.吉林省森林生态系统的碳储量、碳密度及其分布[J].应用生态学报,2011,22(8):2013-2020.
    [10]刘纪远,王绍强,陈镜明,等.1990—2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报,2004,59(4):483-496.
    [11]李正才,徐德应,傅懋毅,等.北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响[J].林业科学研究,2008,20(6):744-749.
    [12]李洁静,潘根兴,李恋卿,等.红壤丘陵双季稻稻田农田生态系统不同施肥下碳汇效应及收益评估[J].农业环境科学学报,2009,28(12):2520-2525.
    [13]邓祥征,姜群鸥,林英志,等.中国农田土壤有机碳贮量变化预测[J].地理研究,2010,29(1):93-101.
    [14]齐永青,刘荣慧,沈彦俊,等.海河流域农田林网碳储量及其潜力评估[J].中国农学通报,2011,27(28):69-73.
    [15]于贵瑞,王秋凤,朱先进.区域尺度陆地生态系统碳收支评估方法及其不确定性[J].地理科学进展,2011(30):103-113.
    [16] Schimel D S, House J I, Hibbard K A. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J].Nature,2001,414:169-172.
    [17] Dorigo W A, Zurita-Milla R, de Wit A J W, et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling[J]. Int J Appl Earth Obs Geoinfo,2007,9:165-193.
    [18] Potter C S, Randderson J T, Field C B, et al. Terrestrial ecosystem production:a process model based on global satellite and surface data[J]. Global environmental Cycle,1993,7:811-841.
    [19] Prince S D, Goward S N. Global primary production:a remotely sensing approach[J]. J Biogeogr,1995,22:815-835.
    [20] Parton W J, et al. Observation and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J].Global Biochem Cycles,1993,7:785-809.
    [21] Melillo J M, Kicklighter D W, McGuire A D, et al. Global climate change and terrestrial net primary production[J]. Nature,1993,363:234-240.
    [22] Running S W, Hunt R. Generalization of a forest ecosystem process model for other biomass, in Scaling Physiological processes:Leaf to Globe[M]. San Diego, California:Academic Press,1991,141-158.
    [23] Foley J A, Prentice I C, Ramankutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biochemical Cycles,1996,10(4):603-628.
    [24] Friend A D, Stevens A K, Knox R G, et al. A process-based terrestrial biosphere model of ecosystem dynamics(Hybrid v3.0)[J].Ecological Modelling,1997,95:249-287.
    [25] Pan Y, Mcguire A D, Melillo J M, et al. Biogeochemistry-based dynamic vegetation model and its application along a moisture gradient in the continental United States[J]. Journal of Vegetation Science,2002,13(3):369-382.
    [26] Kucharik C J, J A Foley, C Delire V A, et al. Testing the performance of a dynamic global ecosystem model:Water balance,carbon balance, and vegetation structure[J]. Global Biogeochem.Cycles,2000,14:795-825.
    [27]姜纪峰,延晓东,黄耀,等.半干旱区农田和草地与大气间二氧化碳和热水通量的模拟研究[J].气候与环境研究,2006,11(3):413-423.
    [28]国庆喜,张海燕,王兴昌,等.东北典型森林土壤呼吸的模拟——IBIS模型的局域化应用[J].生态学报,2010,30(9):2295-2303.
    [29]朱求安,江洪,刘金勋,等.基于IBIS模型的1955—2006年中国土壤温度模拟机时空演变分析[J].地理科学,2010,30(3):355-361.
    [30]杨延征,马元丹,江洪,等.基于IBIS模型的1960—2006年中国陆地生态系统碳收支格局研究[J].生态学报,2016,36(13):3911-3922.
    [31] Kucharik C J, Twine T E. Residue, respiration, and residuals:Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data[J]. Agric For Meteor,2007,146:134-158.
    [32] Vanloocke A, Bernacchi C J; Twine T E. The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle[J].Glob Change Biol Bioenergy,2010,2:180-191.
    [33] Webler G, Roberti D R, Cuadra S V, et al. Evaluation of a dynamic Agroecosystem Model(Agro-IBIS)for soybean in Southern Brazil[J]. Earth Interact,2012,16:1-15.
    [34] Zhang C, Li C, Luo G, et al. Modeling plant structure and its impacts on carbon and water cycles of the Central Asian arid ecosystem in the context of climate change[J]. Ecological Modelling,2013,267(1769):158-179.
    [35]何勇,董文杰,秦大河.6 ka BP中国陆地生态系统净初级生产力的模拟[J].气候变化研究进展,2005,1(2):69-71.
    [36] Piao S L, Ying G D, Tan J G, et al. Detection and attribution of vegetation greening trend in China over the last 30 years[J]. Global Change Biology,2015,21(4):1601-1609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700