Tunable 2H–TaSe_2 room-temperature terahertz photodetector
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tunable 2H–TaSe_2 room-temperature terahertz photodetector
  • 作者:王瑾 ; 郭程 ; 郭万龙 ; 王林 ; 石旺舟 ; 陈效双
  • 英文作者:Jin Wang;Cheng Guo;Wanlong Guo;Lin Wang;Wangzhou Shi;Xiaoshuang Chen;Department of Physics, Shanghai Normal University;State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:terahertz detection;;transition metal dichalcogenides;;photoconductive
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Department of Physics Shanghai Normal University;State Key Laboratory for Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2019-04-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the State Key Basic Research Program of China(Grant Nos.2017YFA0205801,2017YFA0305500,and 2013CB632705);; the National Natural Science Foundation of China(Grant Nos.11334008,61290301,61521005,61405230,and 61675222);; the Youth Innovation Promotion Association(CAS);; the Aviation Science Fund(Grant No.20162490001)
  • 语种:英文;
  • 页:ZGWL201904003
  • 页数:5
  • CN:04
  • ISSN:11-5639/O4
  • 分类号:22-26
摘要
Two-dimensional transition metal dichalcogenides(TMDs) provide fertile ground to study the interplay between dimensionality and electronic properties because they exhibit a variety of electronic phases, such as semiconducting, superconducting, charge density waves(CDW) states, and other unconventional physical properties. Compared with other classical TMDs, such as Mott insulator 1T–TaS_2 or superconducting 2H–NbSe_2, bulk 2H–TaSe_2 has been a canonical system and a touchstone for modeling the CDW measurement with a less complex phase diagram. In contrast to ordinary semiconductors that have only single-particle excitations, CDW can have collective excitation and carry current in a collective fashion. However, manipulating this collective condensation of these intriguing systems for device applications has not been explored. Here, the CDW-induced collective driven of non-equilibrium carriers in a field-effect transistor has been demonstrated for the sensitive photodetection at the highly-pursuit terahertz band. We show that the 2H–TaSe_2-based photodetector exhibits a fast photoresponse, as short as 14 μs, and a responsivity of over 27 V/W at room temperature. The fast response time, relative high responsivity and ease of fabrication of these devices yields a new prospect of exploring CDW condensate in TMDs with the aim of overcoming the existing limitations for a variety of practical applications at THz spectral range.
        Two-dimensional transition metal dichalcogenides(TMDs) provide fertile ground to study the interplay between dimensionality and electronic properties because they exhibit a variety of electronic phases, such as semiconducting, superconducting, charge density waves(CDW) states, and other unconventional physical properties. Compared with other classical TMDs, such as Mott insulator 1T–TaS_2 or superconducting 2H–NbSe_2, bulk 2H–TaSe_2 has been a canonical system and a touchstone for modeling the CDW measurement with a less complex phase diagram. In contrast to ordinary semiconductors that have only single-particle excitations, CDW can have collective excitation and carry current in a collective fashion. However, manipulating this collective condensation of these intriguing systems for device applications has not been explored. Here, the CDW-induced collective driven of non-equilibrium carriers in a field-effect transistor has been demonstrated for the sensitive photodetection at the highly-pursuit terahertz band. We show that the 2H–TaSe_2-based photodetector exhibits a fast photoresponse, as short as 14 μs, and a responsivity of over 27 V/W at room temperature. The fast response time, relative high responsivity and ease of fabrication of these devices yields a new prospect of exploring CDW condensate in TMDs with the aim of overcoming the existing limitations for a variety of practical applications at THz spectral range.
引文
[1]Ferguson B,Wang S,Abbott D and Zhang X C 2003 Proc.SPIE 50707
    [2]Shen Y C,Lo T,Taday P F,Cole B E,Tribe W R and Kemp M C 2005Appl.Phys.Lett.86 241116
    [3]Liu H B,Chen Y Q,Bastiaans G J and Zhang X C 2006 Opt.Express14 415
    [4]Taylor A J,Funk D J and Calgaro F 2004 Appl.Spectrosc.58 428
    [5]Koppens F H L,Mueller T,Avouris Ph,Ferrari A C,Vitiello M S and Polini M 2014 Nat.Nanotechnol.9 780
    [6]Solomon S 1988 Rev.Geophys.26 1
    [7]Richards P L 1994 J.Appl.Phys.76 1
    [8]Yang J,Ruan S C and Zhang M 2008 Chin.Opt.Lett.6 29
    [9]Dyakonov M I and Shur M S 1996 IEEE T.Electron.Dev.43 1640
    [10]Sun Y F,Sun J D,Zhang X Y,Qin H,Zhang B S and Wu D M 2012Chin.Phys.B 21 108504
    [11]Wang Q H,Kalantar-Zadeh K,Kis A,Coleman J N and Strano M S2012 Nat.Nanotechnol.7 699
    [12]Rossnagel K 2011 J.Phys.:Condens.Matter.23 213001
    [13]Hajiyev P,Cong C,Qiu C and Yu T 2013 Sci.Rep.3 2593
    [14]Zak A,Andersson M A,Bauer M,Matukas J,Lisauskas A,Roskos HG and Stake J 2014 Nano Lett.14 5834
    [15]Qin H,Sun J D,Liang S,Li X,Yang X X,He Z H,Yu C and Feng Z H2017 Carbon 116 760
    [16]Viti L,Hu J,Coquillat D,Knap W,Tredicucci A,Politano A and Vitiello M S 2015 Adv.Mater.27 5567
    [17]Viti L,Hu J,Coquillat D,Politano A,Consejo C and Knap W 2016Adv.Mater.28 7390
    [18]Wu D,Ma Y C,Niu Y Y,Liu Q M,Dong T,Zhang S J,Niu J S,Zhou H B,Wei J,Wang Y X,Zhao Z R and Wang N L 2018 Sci.Adv.4eaao3057
    [19]Generalov A A,Andersson M A,Yang X X,Vorobiev A and Stake J2017 IEEE Trans.Terahertz Sci.Technol.7 614
    [20]Tang W W,Liu C L,Wang L,Chen X S,Luo M,Guo W L,Wang S Wand Lu W 2017 Appl.Phys.Lett.111 153502
    [21]Radisavljevic B,Radenovic A,Brivio J,Giacometti V and Kis A 2011Nat.Nanotechnol.6 147
    [22]Jena D and Konar A 2007 Phys.Rev.Lett.98 136805
    [23]Jang C,Adam S,Chen J H,Williams D,Das Sarma S and Fuhrer M S2008 Phys.Rev.Lett.101 146805
    [24]Mak K F,Lee C and Hone J 2010 Phys.Rev.Lett.105 136805

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700