Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes
  • 作者:Xi-Jun ; Wu ; Ze-Jie ; Fei ; Wen-Guan ; Liu ; Jie ; Tan ; Guang-Hua ; Wang ; Dong-Qin ; Xia ; Ke ; Deng ; Xue-Kun ; Chen ; De-Tao ; Xiao ; Sheng-Wei ; Wu ; Wei ; Liu
  • 英文作者:Xi-Jun Wu;Ze-Jie Fei;Wen-Guan Liu;Jie Tan;Guang-Hua Wang;Dong-Qin Xia;Ke Deng;Xue-Kun Chen;De-Tao Xiao;Sheng-Wei Wu;Wei Liu;School of Mathematics and Physics, University of South China;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University;Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences;
  • 英文关键词:Hydrogen;;Graphene;;Single vacancy;;Double vacancy;;Adsorption;;Desorption;;First-principles calculation
  • 中文刊名:HKXJ
  • 英文刊名:核技术(英文版)
  • 机构:School of Mathematics and Physics, University of South China;Shanghai Institute of Applied Physics, Chinese Academy of Sciences;Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University;Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences;
  • 出版日期:2019-04-15
  • 出版单位:Nuclear Science and Techniques
  • 年:2019
  • 期:v.30
  • 基金:supported by the National Natural Science Foundation of China(Grant No.51601212;11475082);; ‘‘Strategic Priority Research Program of Chinese Academy of Sciences’’ Thorium Molten Salts Reactor Fund
  • 语种:英文;
  • 页:HKXJ201904008
  • 页数:9
  • CN:04
  • ISSN:31-1559/TL
  • 分类号:62-70
摘要
Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene.
        Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene.
引文
1.I.Staffell,The energy and fuel data sheet.2011.http://tinyurl.com/energydata
    2.P.D.Jongh,M.Allendorf,J.J.Vajo et al.,Nanoconfined light metal hydrides for reversible hydrogen storage.MRS Bull.38,488-494(2013).https://doi.org/10.1557/mrs.2013.108
    3.L.Pickering,J.Li,D.Reed et al.,Ti-V-Mn based metal hydrides for hydrogen storage.J.Alloys Compd.580,233-237(2013).https://doi.org/10.1016/j.jallcom.2013.03.208
    4.A.M.Jorge,E.Prokofiev,G.L.de Lima et al.,An investigation of hydrogen storage in a magnesium-based alloy processed by equalchannel angular pressing.Int.J.Hydrogen Energy 38,8306-8312(2013).https://doi.org/10.1016/j.ijhydene.2013.03.158
    5.D.L.Chao,C.L.Zhong,Z.W.Ma et al.,Improvement in hightemperature performance of Co-free high-Fe AB 5-type hydrogen storage alloys.Int.J.Hydrogen Energy 37,12375-12383(2012).https://doi.org/10.1016/j.ijhydene.2012.05.147
    6.C.N.Peng,The effects of hydrogen on the helium behavior in palladium.Nucl.Sci.Tech.27,106(2016).https://doi.org/10.1007/s41365-016-0115-5
    7.W.G.Liu,Y.Qian,D.X.Zhang et al.,Theoretical study of the interaction between hydrogen and 4d alloying atom in nickel.Nucl.Sci.Tech.28,82(2017).https://doi.org/10.1007/s41365-017-0235-6
    8.P.Reunchan,S.H.Jhi,Metal-dispersed porous graphene for hydrogen storage.Appl.Phys.Lett.98,93-103(2011).https://doi.org/10.1063/1.3560468
    9.Y.Xia,Z.Yang,Y.Zhu,Porous carbon-based materials for hydrogen storage:advancement and challenges.J.Mater.Chem.A 1,9365-9381(2013).https://doi.org/10.1039/c3ta10583k
    10.X.K.Chen,J.Liu,Z.H.Peng et al.,A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures.Appl.Phys.Lett.110,091907(2017).https://doi.org/10.1063/1.4977776
    11.X.K.Chen,Z.X.Xie,W.X.Zhou et al.,Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction.Carbon 100,492-500(2016).https://doi.org/10.1016/j.carbon.2016.01.045
    12.M.Pumera,Graphene-based nanomaterials for energy storage.Energy Environ.Sci.4,668-674(2011).https://doi.org/10.1039/c0ee00295j
    13.S.Patchkovskii,J.S.Tse,S.N.Yurchenko et al.,Graphene nanostructures as tunable storage media for molecular hydrogen.Natl.Acad.Sci.USA 102,10439-10444(2005).https://doi.org/10.1073/pnas.0501030102
    14.D.W.Boukhvalov,M.I.Katsnelson,A.I.Lichtenstein,Hydrogen on graphene:electronic structure,total energy,structural distortions and magnetism from first-principles calculations.Phys.Rev.B 77,035427(2008).https://doi.org/10.1103/PhysRevB.77.035427
    15.D.C.Elias,R.P.Nair,T.M.Mohiuddin et al.,Control of grphene’s properties by reversible hydrogenation:evidence for graphane.Science 323,610-613(2009).https://doi.org/10.1126/science.1167130
    16.R.Balog,B.J.Jorgensen,L.Nilsson et al.,Bandgap opening in graphene induced by patterned hydrogen adsorption.Nat.Mat.9,315-319(2010).https://doi.org/10.1038/NMAT2710
    17.B.S.Pujari,S.Gusarov,M.Brett et al.,Single-side-hydrogenated graphene:density functional theory predictions.Phys.Rev.B 84,041402(2011).https://doi.org/10.1103/PhysRevB.84.041402
    18.S.S.Han,H.Jung,D.H.Jung et al.,Stability of hydrogenation states of graphene and conditions for hydrogen spillover.Phys.Rev.B 85,155408(2012).https://doi.org/10.1103/PhysRevB.85.155408
    19.W.Zhou,J.Zhou,J.Shen et al.,First-principles study of highcapacity hydrogen storage on graphene with Li atoms.J.Phys.Chem.Solids 73,245-251(2012).https://doi.org/10.1016/j.jpcs.2011.10.035
    20.V.Tozzini,V.Pellegrini,Prospects for hydrogen storage in graphene.Phys.Chem.Chem.Phys.15,80-89(2013).https://doi.org/10.1039/c2cp42538f
    21.S.Gadipelli,Z.Guo,Graphene-based materials:synthesis and gas sorption,storage and separation.Prog.Mater Sci.69,1-60(2015).https://doi.org/10.1016/j.pmatsci.2014.10.004
    22.H.Hu,J.Xin,H.Hu et al.,Metal-free graphene-based catalysteinsight into the catalytic activity:a short review.Appl.Catal.A.Gen.492,1-9(2015).https://doi.org/10.1016/j.apcata.2014.11.041
    23.M.L.Guillou,N.Toulhoat,Y.Pipon et al.,Deuterium migration in nuclear graphite:consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste.J.Nucl.Mater.461,72-77(2015).https://doi.org/10.1016/j.jnucmat.2015.03.005
    24.T.N.Hoai,K.H.Lam,N.T.Thanh et al.,Migration and desorption of hydrogen atom and molecule on/from graphene.Carbon 121,248-256(2017).https://doi.org/10.1016/j.carbon.2017.05.069
    25.Y.Miura,H.Kasai,W.Dino et al.,First principles studies for the dissociative adsorption of H2on graphene.J.Appl.Phys.933,395-400(2003).https://doi.org/10.1063/1.1555701
    26.Z.Ao,S.Li,in Graphene Simulation,ed.by J.R.Gong(InTech,Rijeka,2011),p.53
    27.M.Terrones,A.R.Botello-Mendez,J.Campos-Delgado et al.,Graphene and graphite nanoribbons:morphology,properties,synthesis,defects and applications.Nano Today 5,351-372(2010).https://doi.org/10.1016/j.nantod.2010.06.010
    28.K.S.Novoselov,A.K.Geim,S.V.Morozov et al.,Two-dimensional gas of massless dirac fermions in graphene.Nature 438,197-200(2005).https://doi.org/10.1038/nature04233
    29.K.Nordlund,J.Keinonen,T.Mattila,Formation of ion irradiation induced small-scale defects on graphite surfaces.Phys.Rev.Lett.77,699-702(1996).https://doi.org/10.1103/PhysRevLett.77.699
    30.A.Hashimoto,K.Suenaga,A.Gloter et al.,Direct evidence for atomic defects in graphene layers.Nature 430,870-873(2004).https://doi.org/10.1038/nature02817
    31.P.O.Lehtinen,A.S.Foster,Y.Ma et al.,Irradiation-induced magnetism in graphite:a density functional study.Phys.Rev.Lett.93,187202(2004).https://doi.org/10.1103/PhysRevLett.93.187202
    32.O.V.Yazyev,L.Helm,Defect-induced magnetism in graphene.Phys.Rev.B 7,125408(2007).https://doi.org/10.1103/Phys RevB.75.125408
    33.V.M.Pereira,D.S.Lopes,N.A.Castro,Modeling disorder in graphene.Phys.Rev.B 77,115109(2008).https://doi.org/10.1103/PhysRevB.77.115109
    34.O.V.Yazyev,Magnetism in disordered graphene and irradiated graphite.Phys.Rev.Lett.101,037203(2008).https://doi.org/10.1103/PhysRevLett.101.037203
    35.J.C.Meyer,C.Kisielowski,R.Erni et al.,Direct imaging of lattice atoms and topological defects in graphene membranes.Nano Lett.8,3582-3586(2008).https://doi.org/10.1021/nl801386m
    36.M.M.Ugeda,I.Brihuega,F.Guinea et al.,Missing atom as a source of carbon magnetism.Phys.Rev.Lett.104,096804(2010).https://doi.org/10.1103/PhysRevLett.104.096804
    37.T.Kondo,Y.Honma,J.Oh et al.,Edge states propagating from a defect of graphite:scanning tunneling spectroscopy measurements.Phys.Rev.B 82,153414(2010).https://doi.org/10.1103/PhysRevB.82.153414
    38.B.Wen,M.S.Cao,M.M.Lu et al.,Reduced graphene oxides:light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures.Adv.Mater.26,3484-3489(2014).https://doi.org/10.1002/adma.201400108
    39.M.S.Cao,X.X.Wang,W.Q.Cao et al.,Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion.Small 14,1800987-1800994(2018).https://doi.org/10.1002/smll.201800987
    40.W.Q.Cao,X.X.Wang,J.Yuan et al.,Temperature dependent microwave absorption of ultrathin graphene composites.J.Mater.Chem.C 3,10017-10022(2015).https://doi.org/10.1039/c5tc02185e
    41.W.L.Song,M.S.Cao,Z.L.Hou et al.,High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band.Appl.Phys.Lett.94,233110(2009).https://doi.org/10.1063/1.3152764
    42.Y.N.Tang,Z.Y.Liu,Z.G.Shen et al.,Adsorption sensitivity of metal atom decorated bilayer graphene toward toxic gas molecules(CO,NO,SO2and HCN).Sensor.Actuat.B Chem.238,182-195(2017).https://doi.org/10.1016/j.snb.2016.07.039
    43.Y.N.Tang,H.D.Chai,W.G.Chen et al.,Theoretical study on geometric,electronic and catalytic performances of Fe dopant pairs in graphene.Phys.Chem.Chem.Phys.19,26369-26380(2017).https://doi.org/10.1039/c7cp05683d
    44.Y.N.Tang,W.G.Chen,Z.G.Shen et al.,Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation.Carbon 111,448-458(2017).https://doi.org/10.1016/j.carbon.2016.10.028
    45.Y.N.Tang,H.D.Chai,H.W.Zhang et al.,Tuning the adsorption and interaction of CO and O-2 on graphene-like BC3-supported non-noble metal atoms.Phys.Chem.Chem.Phys.20,14040-14052(2018).https://doi.org/10.1039/c8cp00772a
    46.Y.N.Tang,Z.G.Shen,Y.Q.Ma et al.,Divacancy-nitrogen/boroncodoped graphene as a metal-free catalyst for high-efficient COoxidation.Mater.Chem.Phys.207,11-22(2018).https://doi.org/10.1016/j.matchemphys.2017.12.048
    47.L.H.Yao,W.Q.Cao,M.S.Cao et al.,Doping effect on the adsorption of Na atom onto graphenes.Curr.Appl.Phys.16,574-580(2016).https://doi.org/10.1016/j.cap.2016.03.001
    48.C.Marina,C.Simone,F.T.Gian et al.,Structure and stability of hydrogenated carbon atom vacancies in graphene.Carbon 77,165-174(2014).https://doi.org/10.1016/j.carbon.2014.05.018
    49.K.Yamashita,M.Saito,T.Oda,Atomic geometry and stability of mono-,di-,and trivacancies in graphene.Jpn.J.Appl.Phys.45,6534-6536(2006).https://doi.org/10.1143/JJAP.45.6534
    50.A.A.El-Barbary,R.H.Telling,C.P.Ewels et al.,Structure and energetics of the vacancy in graphite.Phys.Rev.B 68,144107(2003).https://doi.org/10.1103/PhysRevB.68.144107
    51.A.V.Krasheninnikov,P.O.Lehtinen,A.S.Foster et al.,Bending the rules:contrasting vacancy energetics and migration in graphite and carbon nanotubes.Chem.Phys.Lett.418,132-147(2006).https://doi.org/10.1016/j.cplett.2005.10.106
    52.D.Q.Xia,C.L.Ren,W.Zhang et al.,Theoretical study of the interaction between metallic fission products and defective graphite.Comput.Mater.Sci.106,129-134(2015).https://doi.org/10.1016/j.commatsci.2015.04.029
    53.Y.Lei,A.S.Stephen,W.G.Zhu et al.,Hydrogen-induced magnetization and tunable hydrogen storage in graphitic structures.Phys.Rev.B 77,134114(2008).https://doi.org/10.1103/Phys RevB.77.134114
    54.Q.G.Jiang,Z.M.Ao,W.T.Zheng et al.,Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy.Phys.Chem.Chem.Phys.15,21016-21022(2013).https://doi.org/10.1039/c3cp52976b
    55.G.K.Sunnardianto,I.Maruyama,K.Kusakabe,Dissociationchemisorption pathways of H2 molecule on graphene activated by a hydrogenated mono-vacancy V11.Adv.Sci.Eng.Med.8,421-426(2016).https://doi.org/10.1166/asem.2016.1875
    56.G.K.Sunnardianto,I.Maruyama,K.Kusakabe,Storing-hydrogen processes on graphene activated by atomic-vacancies.Int.J.Hydrogen Energy 42,23691-23697(2017).https://doi.org/10.1016/j.ijhydene.2017.01.115
    57.P.Hohenberg,W.Kohn,Inhomogeneous electron gas.Phys.Rev.B 136,864(1964).https://doi.org/10.1103/PhysRev.136.B864
    58.W.Kohn,L.J.Sham,Self-consistent equations including exchange and correlation effects.Phys.Rev.B 140,1133(1965).https://doi.org/10.1103/PhysRev.140.A1133
    59.G.Kresse,J.Furthmuller,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B 54,11169-11186(1996).https://doi.org/10.1103/PhysRevB.54.11169
    60.J.P.Perdew,J.A.Chevary,S.H.Vosko et al.,Atoms,molecules,solids,and surfaces-applications of the generalized gradient approximation for exchange and correlation.Phys.Rev.B 46,6671-6687(1992).https://doi.org/10.1103/PhysRevB.46.6671
    61.P.E.Blochl,Projector Augmented-Wave Method.Phys.Rev.B50,17953-17979(1994).https://doi.org/10.1103/PhysRevB.50.17953
    62.G.Henkelman,B.P.Uberuaga,H.Jonsson,A climbing image nudged elastic band method for finding saddle points and minimum energy paths.J.Chem.Phys.113,9901-9904(2000).https://doi.org/10.1063/1.1329672
    63.G.Henkelman,H.Jonsson,Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points.J.Chem.Phys.113,9978-9985(2000).https://doi.org/10.1063/1.1323224
    64.C.Li,C.Fang,C.Yang,First-principle studies of radioactive fission productions Cs/Sr/Ag/I adsorption on chrome-molybdenum steel in Chinese 200 MW HTR-PM.Nucl.Sci.Technol.28,79-88(2017).https://doi.org/10.1007/s41365-017-0241-8
    65.V.Moro′n,P.Gamallo,R.Sayo′s,DFT and kinetics study of O/O2mixturesreacting over a graphite(0001)basal surface.Theor.Chem.Acc.128,683-694(2011).https://doi.org/10.1007/s00214-010-0798-3
    66.J.Fayos,Possible 3D carbon structures as progressive intermediates ingraphite to diamond phase transition.J.Solid State Chem.148,278-285(1999).https://doi.org/10.1006/jssc.1999.8448
    67.X.W.Sha,B.Jackson,First-principles study of the structural and energetic properties of H atoms on a graphite(0001)surface.Surf.Sci.496,318-330(2002).https://doi.org/10.1016/S0039-6028(01)01602-8
    68.D.W.Boukhvalov,M.I.Katsnelson,A.I.Lichtenstein,Hydrogen on graphene:electronic structure,total energy,structural distortions and magnetism from first-principles calculations.Phys.Rev.B 77,035427(2008).https://doi.org/10.1103/Phys Rev B.77.035427
    69.Y.Miura,H.Kasai,W.Dino et al.,First principles studies for the disociative adsorption of H2on graphene.J.Appl.Phys.93,3395-3400(2003).https://doi.org/10.1063/1.1555701
    70.P.O.Lethinen,A.S.Foster,Y.Ma et al.,Irradiation induced magnetism in graphene:a density functional study.Phys.Rev.Lett.93,187202(2004).https://doi.org/10.1103/Phys Rev Lett.93.187202
    71.O.V.Yazyev,L.Helm,Defect induced magnetism in graphene.Phys.Rev.B 75,125408(2007).https://doi.org/10.1103/Phys RevB.75.125408
    72.M.W.C.Dharma-Wardana,M.Z.Zgierski,Magnetism and structure at vacant lattice sites in graphene.Phys.E 41,80-83(2008).https://doi.org/10.1016/j.physe.2008.06.007
    73.X.Q.Dai,J.H.Zhao,M.H.Xie et al.,First-principle study on magnetism induced by Vacanies in graphene.Eur.Phys.J.B 80,343-351(2011).https://doi.org/10.1140/epjb/e2011-10955-x
    74.F.Banhart,J.Kotakoski,A.V.Krasheninnikov,Structural Defects in Graphene.ACS Nano 5,26-41(2011).https://doi.org/10.1021/nn102598m

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700