Synergistic interaction of metal–acid sites for phenol hydrodeoxygenation over bifunctional Ag/TiO_2 nanocatalyst
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergistic interaction of metal–acid sites for phenol hydrodeoxygenation over bifunctional Ag/TiO_2 nanocatalyst
  • 作者:Andrew ; Ng ; Kay ; Lup ; Faisal ; Abnisa ; Wan ; Mohd ; Ashri ; Wan ; Daud ; Mohamed ; Kheireddine ; Aroua
  • 英文作者:Andrew Ng Kay Lup;Faisal Abnisa;Wan Mohd Ashri Wan Daud;Mohamed Kheireddine Aroua;Department of Chemical Engineering, Faculty of Engineering, University of Malaya;Centre for Carbon Dioxide Capture and Utilization, School of Science and Technology, Sunway University;Department of Engineering, Lancaster University;
  • 英文关键词:Silver based catalyst;;Physicochemical properties;;Hydrogen spillover;;Metal–acid sites;;Hydrodeoxygenation
  • 中文刊名:ZHGC
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:Department of Chemical Engineering, Faculty of Engineering, University of Malaya;Centre for Carbon Dioxide Capture and Utilization, School of Science and Technology, Sunway University;Department of Engineering, Lancaster University;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:v.27
  • 基金:GSP-MOHE,University of Malaya for fully funding this study through the project number “MO008-2015”;; Ministry of Higher Education of Malaysia (MOHE) for MyBrain15 (MyPhD) program;; IPPP for project “PG081-2016A”
  • 语种:英文;
  • 页:ZHGC201902013
  • 页数:13
  • CN:02
  • ISSN:11-3270/TQ
  • 分类号:122-134
摘要
The use of silver metal for hydrodeoxygenation(HDO) applications is scarce and different studies have indicated of its varying HDO activity. Several computational studies have reported of silver having almost zero turnover frequency for HDO owing to its high C\\O bond breaking energy barrier and low carbon and oxygen binding energies.Herein this work, titania supported silver catalysts were synthesized and firstly used to examine its phenol HDO activity via experimental reaction runs. BET, XRD, FESEM, TEM, EDX, ICP–OES, Pyridine-FTIR, NH_3-TPD and H_2-TPD analyses were done to investigate its physicochemical properties. Phenomena of hydrogen spillover and metal–acid site synergy were examined in this study. With the aid of TiO_2 reducible support, hydrogen spillover and metal–acid site interactions were observed to a certain extent but were not as superior as other Pt, Pd, Ni-based catalysts used in other HDO studies. The experimental findings showed that Ag/TiO_2 catalyst has mediocre phenol conversion but high benzene selectivity which confirms the explanation from other computational studies.
        The use of silver metal for hydrodeoxygenation(HDO) applications is scarce and different studies have indicated of its varying HDO activity. Several computational studies have reported of silver having almost zero turnover frequency for HDO owing to its high C\\O bond breaking energy barrier and low carbon and oxygen binding energies.Herein this work, titania supported silver catalysts were synthesized and firstly used to examine its phenol HDO activity via experimental reaction runs. BET, XRD, FESEM, TEM, EDX, ICP–OES, Pyridine-FTIR, NH_3-TPD and H_2-TPD analyses were done to investigate its physicochemical properties. Phenomena of hydrogen spillover and metal–acid site synergy were examined in this study. With the aid of TiO_2 reducible support, hydrogen spillover and metal–acid site interactions were observed to a certain extent but were not as superior as other Pt, Pd, Ni-based catalysts used in other HDO studies. The experimental findings showed that Ag/TiO_2 catalyst has mediocre phenol conversion but high benzene selectivity which confirms the explanation from other computational studies.
引文
[1]A.N.Kay Lup,F.Abnisa,W.M.A.Wan Daud,M.K.Aroua,A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds,Appl.Catal.A Gen.541(2017)87-106.
    [2]P.M.Mortensen,J.-D.Grunwaldt,P.A.Jensen,K.G.Knudsen,A.D.Jensen,A review of catalytic upgrading of bio-oil to engine fuels,Appl.Catal.A Gen.407(2011)1-19.
    [3]D.Procházková,P.Zámostny,M.Bejblová,L.?erveny,J.?ejka,Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts,Appl.Catal.A Gen.332(2007)56-64.
    [4]S.Echeandia,B.Pawelec,V.L.Barrio,P.L.Arias,J.F.Cambra,C.V.Loricera,J.L.G.Fierro,Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HYzeolite and Al2O3.An approach to O-removal from bio-oils,Fuel 117(2014)1061-1073.
    [5]Z.He,X.Wang,Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading,Catal.Sustain.Energy 1(2012)28-52.
    [6]J.Zhang,B.Wang,E.Nikolla,J.W.Medlin,Directing reaction pathways through controlled reactant binding at Pd-TiO2interfaces,Angew.Chem.56(2017)1-6.
    [7]Y.Hong,H.Zhang,J.Sun,K.M.Ayman,A.J.R.Hensley,M.Gu,M.H.Engelhard,J.-S.McEwen,Y.Wang,Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol,ACS Catal.4(2014)3335-3345.
    [8]P.S.Rezaei,H.Shafaghat,W.M.A.Wan Daud,Origin of catalyst deactivation in atmospheric hydrogenolysis of m-cresol over Fe/HBeta,RSC Adv.5(2015)51278-51285.
    [9]A.T.To,D.E.Resasco,Hydride transfer between a phenolic surface pool and reactant paraffins in the catalytic cracking of m-cresol/hexanes mixtures over an HY zeolite,J.Catal.329(2015)57-68.
    [10]S.J.Tauster,Strong metal-support interactions,Acc.Chem.Res.20(1987)389-394.
    [11]S.J.Tauster,S.C.Fung,R.L.Garten,Strong metal-support interactions.Group 8 noble metals supported on TiO2,J.Am.Chem.Soc.100(1978)170-175.
    [12]P.M.de Souza,R.C.Rabelo-Neto,L.E.P.Borges,G.Jacobs,B.H.Davis,T.Sooknoi,D.E.Resasco,F.B.Noronha,Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports,ACS Catal.5(2015)1318-1329.
    [13]A.N.Kay Lup,F.Abnisa,W.M.A.Wan Daud,M.K.Aroua,A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds,J.Ind.Eng.Chem.56(2017)1-34.
    [14]M.Chia,Y.J.Pagán-Torres,D.Hibbitts,Q.Tan,H.N.Pham,A.K.Datye,M.Neurock,R.J.Davis,J.A.Dumesic,Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts,J.Am.Chem.Soc.133(2011)12675-12689.
    [15]J.Zhang,L.D.Ellis,B.Wang,M.J.Dzara,C.Sievers,S.Pylypenko,E.Nikolla,J.W.Medlin,Control of interfacial acid-metal catalysis with organic monolayers,Nat.Catal.1(2018)148-155.
    [16]J.Sá,A.?r?bowata,Hydrogenation with Low-cost Transition Metals,CRC Press,Boca Raton,2016.
    [17]C.Su,C.-C.Chen,C.-S.Tsai,J.-L.Lin,J.-C.Lin,The adsorption,thermal desorption and photochemistry of methyl iodide on an Ag-covered TiO2(110)surface,J.Chin.Chem.Soc.53(2006)803-813.
    [18]X.Du,J.He,J.Zhu,L.Sun,S.An,Ag-deposited silica-coated Fe3O4magnetic nanoparticles catalyzed reduction of p-nitrophenol,Appl.Surf.Sci.258(2012)2717-2723.
    [19]Y.Mikami,A.Noujima,T.Mitsudome,T.Mizugaki,K.Jitsukawa,K.Kaneda,Selective deoxygenation of styrene oxides under a CO atmosphere using silver nanoparticle catalyst,Tetrahedron Lett.51(2010)5466-5468.
    [20]X.-Y.Dong,Z.-W.Gao,K.-F.Yang,W.-Q.Zhang,L.-W.Xu,Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals,Catal.Sci.Technol.5(2015)2554-2574.
    [21]T.Mitsudome,A.Noujima,Y.Mikami,T.Mizugaki,K.Jitsukawa,K.Kaneda,Supported gold and silver nanoparticles for catalytic deoxygenation of epoxides into alkenes,Angew.Chem.122(2010)5677-5680.
    [22]T.Mitsudome,Y.Mikami,M.Matoba,T.Mizugaki,K.Jitsukawa,K.Kaneda,Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions,Angew.Chem.51(2012)136-139.
    [23]F.Jalid,T.S.Khan,F.Q.Mir,M.A.Haider,Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface,J.Catal.353(2017)265-273.
    [24]A.C.Lausche,H.Falsig,A.D.Jensen,F.Studt,Trends in the hydrodeoxygenation activity and selectivity of transition metal surfaces,Catal.Lett.144(2014)1968-1972.
    [25]H.Shafaghat,P.S.Rezaei,W.M.A.Wan Daud,Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta,Fe/HBeta and NiFe/HBeta,J.Ind.Eng.Chem.35(2016)268-276.
    [26]P.Munnik,P.E.de Jongh,K.P.de Jong,Recent developments in the synthesis of supported catalysts,Chem.Rev.115(2015)6687-6718.
    [27]E.Marceau,X.Carrier,M.Che,Impregnation and drying,in:K.P.De Jong(Ed.),Synthesis of Solid Catalysts,Wiley-VCH,Germany 2010,pp.59-82.
    [28]G.Alloncle,N.Gilon,C.-P.Lienemann,S.Morin,A new method for quantitative analysis of metal content in heterogeneous catalysts:Laser ablation-ICP-AES,C.R.Chim.12(2009)637-646.
    [29]S.Xing,P.Lv,J.Fu,J.Wang,P.Fan,L.Yang,Z.Yuan,Direct synthesis and characterization of pore-broadened Al-SBA-15,Microporous Mesoporous Mater.239(2017)316-327.
    [30]M.S.Zanuttini,B.O.Dalla Costa,C.A.Querini,M.A.Peralta,Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials,Appl.Catal.A Gen.482(2014)352-361.
    [31]A.N.Kay Lup,F.Abnisa,W.M.A.Wan Daud,M.K.Aroua,Delayed volatiles release phenomenon at higher temperature in TGA via sample encapsulation technique,Fuel 234(2018)422-429.
    [32]Q.Wu,C.Zhang,B.Zhang,X.Li,Z.Ying,T.Liu,W.Lin,Y.Yu,H.Cheng,F.Zhao,Highly selective Pt/ordered mesoporous TiO2-SiO2catalysts for hydrogenation of cinnamaldehyde:The promoting role of Ti2+,J.Colloid Interface Sci.463(2016)75-82.
    [33]L.Wang,M.Zhang,M.Zhang,G.Sha,C.Liang,Hydrodeoxygenation of dibenzofuran over mesoporous silica COK-12 supported palladium catalysts,Energy Fuel 27(2013)2209-2217.
    [34]Y.Shi,X.-L.Zhang,G.Feng,X.Chen,Z.-H.Lu,Ag-Si O2nanocomposites with plumpudding structure as catalyst for hydrogenation of 4-nitrophenol,Ceram.Int.41(2015)14660-14667.
    [35]G.Leofanti,M.Padovan,G.Tozzola,B.Venturelli,Surface area and pore texture of catalysts,Catal.Today 41(1998)207-219.
    [36]H.E.Swanson,H.F.McMurdie,M.C.Morris,E.H.Evans,National Bureau of Standards Monograph,25,Standard X-ray Diffraction Powder Patterns 7,United States Department of Commerce,Washington D.C.,1969
    [37]M.C.Morris,H.F.Mc Murdie,E.H.Evans,B.Paretzkin,H.S.Parker,N.C.Panagiotopoulos,National Bureau of Standards Monograph,25,Standard X-ray Diffraction Powder Patterns 18,United States Department of Commerce,Washington D.C.,1981
    [38]G.Leofanti,G.Tozzola,M.Padovan,G.Petrini,S.Bordiga,A.Zecchina,Catalyst characterization:Characterization techniques,Catal.Today 34(1997)307-327.
    [39]J.I.Goldstein,D.Newbury,D.Joy,C.Lyman,P.Echlin,E.Lifshin,L.Sawyer,J.R.Michael,Scanning Electron Microscopy and X-ray Microanalysis,3rd Kluwer Academic/Plenum Publishers,New York,2003.
    [40]Y.Chu,Z.Yu,A.Zheng,H.Fang,H.Zhang,S.-J.Huang,S.-B.Liu,F.Deng,Acidic strengths of Br?nsted and Lewis acid sites in solid acids scaled by31P NMR chemical shifts of adsorbed trimethylphosphine,J.Phys.Chem.C 115(2011)7660-7667.
    [41]T.J.Dines,C.H.Rochester,A.M.Ward,Infrared and Raman study of the surface acidity of titania-supported vanadia catalysts,J.Chem.Soc.Faraday Trans.87(1991)1611-1616.
    [42]M.Galan-Fereres,L.J.Alemany,R.Mariscal,M.A.Banares,J.A.Anderson,J.L.G.Fierro,Surface acidity and properties of titania-silica catalysts,Chem.Mater.7(1995)1342-1348.
    [43]B.Xin,L.Jing,Z.Ren,B.Wang,H.Fu,Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2,J.Phys.Chem.B 109(2005)2805-2809.
    [44]A.Rismanchian,Y.-W.Chen,S.S.C.Chuang,In situ infrared study of photoreaction of ethanol on Au and Ag/TiO2,Catal.Today 264(2016)16-22.
    [45]S.R.Seyedmonir,D.E.Strohmayer,G.J.Guskey,G.L.Geoffroy,M.A.Vannice,Characterization of supported silver catalysts.III.Effects of support,pretreatment,and gaseous environment on the dispersion of Ag,J.Catal.93(1985)288-302.
    [46]R.G.Pearson,The transition-metal-hydrogen bond,Chem.Rev.85(1985)41-49.
    [47]T.Onfroy,G.Clet,S.B.Bukallah,T.Visser,M.Houalla,Acidity of titania-supported tungsten or niobium oxide catalysts:Correlation with catalytic activity,Appl.Catal.A Gen.298(2006)80-87.
    [48]C.Martin,I.Martin,C.del Moral,V.Rives,FT-IR assessment through pyridine adsorption of the surface acidity of alkali-doped MoO3/TiO2,J.Catal.146(1994)415-421.
    [49]C.D.Baertsch,K.T.Komala,Y.-H.Chua,E.Iglesia,Genesis of Br?nsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts,J.Catal.205(2002)44-57.
    [50]A.J.R.Hensley,Y.Hong,R.Zhang,H.Zhang,J.Sun,Y.Wang,J.-S.McEwen,Enhanced Fe2O3reducibility via surface modification with Pd:Characterizing the synergy with Pd/Fe catalysts for hydrodeoxygenation reactions,ACS Catal.4(2014)3381-3392.
    [51]R.C.Nelson,B.Baek,P.Ruiz,B.Goundie,A.Brooks,M.C.Wheeler,B.G.Frederick,L.C.Grabow,R.N.Austin,Experimental and theoretical insights into the hydrogenefficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2,ACS Catal.5(2015)6509-6523.
    [52]K.F?ttinger,E.Halwax,H.Vinek,Deactivation and regeneration of Pt containing sulfated zirconia and sulfated zirconia,Appl.Catal.A Gen.301(2006)115-122.
    [53]C.Zhang,L.Chen,H.Cheng,X.Zhu,Z.Qi,Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid toγ-butyrolactone,Catal.Today 276(2016)55-61.
    [54]P.Sautet,F.Delbecq,Catalysis and surface organometallic chemistry:A view from theory and simulations,Chem.Rev.110(2010)1788-1806.
    [55]I.E.Wachs,Raman and IR studies of surface metal oxide species on oxide supports:Supported metal oxide catalysts,Catal.Today 27(1996)437-455.
    [56]P.A.Redhead,Thermal desorption of gases,Vacuum 12(1962)203-211.
    [57]A.N.Kay Lup,F.Abnisa,W.M.A.Wan Daud,M.K.Aroua,Acidity,oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process,IOP Conf.Ser.Mater.Sci.Eng.334(2018)1-6.
    [58]S.-K.Wu,P.-C.Lai,Y.-C.Lin,H.-P.Wan,H.-T.Lee,Y.-H.Chang,Atmospheric hydrodeoxygenation of guaiacol over alumina-,zirconia-,and silica-supported nickel phosphide catalysts,ACS Sustain.Chem.Eng.1(2013)349-358.
    [59]Y.-K.Hong,D.-W.Lee,H.-J.Eom,K.-Y.Lee,The catalytic activity of Pd/WOx/γ-Al2O3for hydrodeoxygenation of guaiacol,Appl.Catal.B Environ.150-151(2014)438-445.
    [60]B.Peng,C.Zhao,I.Mejía-Centeno,G.A.Fuentes,A.Jentys,J.A.Lercher,Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3alcohols on Pt/Al2O3,Catal.Today 183(2012)3-9.
    [61]Y.T.Kim,J.A.Dumesic,G.W.Huber,Aqueous-phase hydrodeoxygenation of sorbitol:A comparative study of Pt/Zr phosphate and Pt-ReOx/C,J.Catal.304(2013)72-85.
    [62]L.Chen,Y.Zhu,H.Zheng,C.Zhang,B.Zhang,Y.Li,Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts,J.Mol.Catal.AChem.351(2011)217-227.
    [63]Y.Liu,J.Chen,J.Zhang,Effects of the supports on activity of supported nickel catalysts for hydrogenation of m-dinitrobenzene to m-phenylenediamine,Chin.J.Chem.Eng.15(2007)63-67.
    [64]W.Karim,C.Spreafico,A.Kleibert,J.Gobrecht,J.Vandevondele,Y.Ekinci,J.A.van Bokhoven,Catalyst support effects on hydrogen spillover,Nature 541(2017)68-71.
    [65]E.Furimsky,Catalytic hydrodeoxygenation,Appl.Catal.A Gen.199(2000)147-190.
    [66]K.Li,R.Wang,J.Chen,Hydrodeoxygenation of anisole over silica-supported Ni2P,MoP,and NiMoP catalysts,Energy Fuel 25(2011)854-863.
    [67]J.Chen,L.Sun,R.Wang,J.Zhang,Hydrodechlorination of chlorobenzene over Ni2P/Si O2catalysts:Influence of Ni2P loading,Catal.Lett.133(2009)346.
    [68]P.Gupta,V.L.Colvin,S.M.George,Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces,Phys.Rev.B 37(1988)8234-8243.
    [69]W.C.Conner,J.L.Falconer,Spillover in heterogeneous catalysis,Chem.Rev.95(1995)759-788.
    [70]J.T.Miller,B.L.Meyers,F.S.Modica,G.S.Lane,M.Vaarkamp,D.C.Koningsberger,Hydrogen temperature-programmed desorption(H2TPD)of supported platinum catalysts,J.Catal.143(1993)395-408.
    [71]J.J.Spivey,G.W.Roberts,J.G.Goodwin Jr.,S.Kim,W.D.Rhodes,Turnover frequencies in metal catalysis:Meanings,functionalities and relationships,in:J.J.Spivey,G.W.Roberts(Eds.),Catalysis,Royal Society of Chemistry,UK 2004,pp.320-348.
    [72]H.Jiang,H.Yang,R.Hawkins,Z.Ring,Effect of palladium on sulfur resistance in Pt-Pd bimetallic catalysts,Catal.Today 125(2007)282-290.
    [73]C.Chen,G.Chen,F.Yang,H.Wang,J.Han,Q.Ge,X.Zhu,Vapor phase hydrodeoxygenation and hydrogenation of m-cresol on silica supported Ni,Pd and Pt catalysts,Chem.Eng.Sci.135(2015)145-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700