硫酸根改性g-C_3N_4的制备及其催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Photocatalytic Performance of Sulfate Modified Graphitic Carbon Nitride
  • 作者:马琳 ; 赵艳锋 ; 张春龙 ; 胡绍争
  • 英文作者:MA Lin;ZHAO Yan-feng;ZHANG Chun-long;HU Shao-zheng;College of Chemistry, Chemical Engineering, and Environmental Engineering, Liaoning Shihua University;
  • 关键词:石墨相氮化碳 ; 硫酸根改性 ; 酸水热处理 ; 合成双氧水 ; 光催化
  • 英文关键词:graphitic carbon nitride;;sulfate modification;;acid-hydrothermal method;;production of hydrogen peroxide;;photocatalysis
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:辽宁石油化工大学化学化工与环境学部;
  • 出版日期:2019-01-04 16:12
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(41571464)~~
  • 语种:中文;
  • 页:JXHG201905016
  • 页数:7
  • CN:05
  • ISSN:21-1203/TQ
  • 分类号:124-130
摘要
采用酸水热后处理法制备了具有优异光催化合成双氧水性能的硫酸根改性石墨相氮化碳纳米棒催化剂。采用XRD、N_2吸附脱附、UV-Vis、FTIR、SEM、XPS、TPD、EIS及荧光光谱对催化剂进行表征。结果显示:硫酸根的引入改变了催化剂的结构性质、光学性质和氧气吸附能力。以高压钠灯为光源,乙二胺四乙酸为空穴捕获剂,所制备的硫酸根改性氮化碳催化剂的双氧水平衡浓度为2.7 mmol/L,是纯氮化碳的2.7倍。所制备的硫酸根改性氮化碳催化剂的双氧水平衡浓度为2.7 mmol/L,是纯氮化碳的2.7倍。
        Sulfate modified graphitic carbon nitride nanorods as an efficient photocatalyst for the production of hydrogen peroxide was prepared via acid-hydrothermal method. XRD, N_2 adsorption, UV-Vis,FTIR, SEM, XPS, TPD, EIS and PL were used to characterize the obtained catalysts. The results showed that sulfate modification not only influenced the morphology, structure property and optical property of catalyst, but also promoted its O_2 adsorption ability. The equilibrium concentration of hydrogen peroxide over the as-prepared sulfate modified graphitic carbon nitride catalyst was 2.7 mmol/L, higher 2.7 times than that over neat graphitic carbon nitride, using high-pressure sodium lamp as light source and ethylenediaminetetraacetic acid as hole scavenger.
引文
[1]Liu G,Wang L Z,Yang H G,et al.Titania-based photocatalystscrystal growth,doping and heterostructuring[J].Journal of Chemistry Materials,2010,20(5):831-843.
    [2]Zhang D Q,Li G S,Yu J C.Inorganic materials for photocatalytic water disinfection[J].Journal of Chemistry Materials,2010,20(22):4529-4536.
    [3]Zhang J S,Zhang G G,Chen X F,et al.Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light[J].Angewandte Chemie International Edition,2012,51(13):3183-3187.
    [4]Hu S Z,Li F Y,Fan Z P,et al.Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability[J].Transactions Dalton,2015,44(3):1084-1092.
    [5]Qu Xiaoyu(曲晓钰),Hu Shaozheng(胡绍争),Li Ping(李萍),et al.Molten salt-assisted microwave method for synthesizing nickel doped graphitic carbon nitride and its outstanding nitrogen photofixation ability[J].Chemical Journal of Chinese Universities(高等学校化学学报),2017,38(12):2280-2288.
    [6]Cao Yuhui(曹宇辉),Tong Yufei(佟宇飞),Zhang Jian(张健),et al.Infrared ray assisted microwave method for synthesizing graphitic carbon nitride and its outstanding nitrogen photofixation ability[J].Chem J Chinese Universities(高等学校化学学报),2016,37(7):1357-1363.
    [7]Ansari M B,Jin H L,Parvin M N,et al.Activation of graphitic carbon nitride(g-C3N4)by alkaline hydrothermal treatment for gas phase in photocatalytic NO oxidation[J].Today Catalysis,2012,185(1):211-216.
    [8]Zhang Y J,Mori T,Ye J H,et al.Phosphorus-doped carbon nitride solid:enhanced electrical conductivity and photocurrent generation[J].Journal of the American Chemical Society,2010,132(18):6294-6295.
    [9]Bu Y Y,Chen Z Y,Li W B.Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material[J].Environmental B:Catalysis Applied,2014,144(1):622-630.
    [10]Chang C,Fu Y,Hu M,et al.Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride(Pd/mpg-C3N4)under simulated solar light irradiation[J].Environmental B:Catalysis Applied,2013,142(5):553-560.
    [11]Zhang J S,Chen X F,Takanabe K,et al.Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J].Angewandte Chemie International Edition,2010,49(2):441-444.
    [12]Pan C S,Xu J,Wang Y J,et al.Dramatic activity of c3n4/bipo4photocatalyst with core/shell structure formed by self-assembly[J].Advanced Functional Materials,2012,22(7):1518-1524.
    [13]Wang X C,Maeda K,Chen X F,et al.Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J].Journal of the American Chemical Society,2009,131(5):1680-1681.
    [14]Zhou W J,Liu X Y,Cui J J,et al.Control synthesis of rutile TiO2microspheres,nanoflowers,nanotrees and nanobelts via acid-hydrothermal method and their optical properties[J].Cryst Eng Comm,2011,13(14):4557-4563.
    [15]Tong J C,Zhang L,Li F,et al.Rapid and high-yield production of g-C3N4 nanosheetsvia chemical exfoliation for photocatalytic H2evolution[J].RSC Advance,2015,5(107):88149-88153.
    [16]Campos-Martin J M,Blanco-Brieva G,Fierro J L G.Hydrogen peroxide synthesis:An outlook beyond the anthraquinone process[J].Angewandte Chemie International Edition,2006,45(42):6962-6984.
    [17]Samanta C.Direct synthesis of hydrogen peroxide from hydrogen and oxygen:An overview of recent developments in the process[J].Catalysis Applied A:General,2008,350(2):133-149.
    [18]Yamazaki S,Siroma Z,Senoh H,et al.A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J].Journal of Sources Power,2008,178(1):20-25.
    [19]Shaegh S A M,Nguyen N T,Ehteshami S M M,et al.Amembraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material[J].Energy&Science Environmental,2012,5(8):8225-8228.
    [20]Hu S Z,Qu X Y,Li P,et al.Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere:The effect of Cu(I)-N active sites[J].Chemical Engineering Journal,2018,334(15):410-418.
    [21]Ding Y,Zhao W,Hu H,et al.[π-C5H5N(CH2)15CH3]3[PW4O32]/H2O2/ethyl acetate/alkenes:A recyclable and environmentally benign alkenes epoxidation catalytic system[J].Green Chemistry,2008,10(9):910-913.
    [22]Saha M,Das M,Nasani R,et al.Targeted water soluble coppertetrazolate complexes:Interactions with biomolecules and catecholase like activities[J].Transactions Dalton,2015,44(46):20154-20167.
    [23]Wang X C,Maeda K,Thomas A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J].Nature Materials,2009,8(1):76-80.
    [24]Du X R,Zou G J,Wang Z H,et al.A scalable chemical route to soluble acidified graphitic carbon nitride:An ideal precursor for isolated ultrathin g-C3N4 nanosheets[J].Nanoscale,2015,7(19):8701-8706.
    [25]Zhang J S,Zhang M W,Lin L H,et al.Sol processing of conjugated carbon nitride powders for thin-film fabrication[J].Angewandte Chemie International Edition,2015,54(21):6297-6301.
    [26]Zhou Z,Wang J,Yu J,et al.Dissolution and liquid crystals phase of2d polymeric carbon nitride[J].Journal of the Chemical Society,2015,137(6):2179-2182.American
    [27]Kim Y I,Atherton S J,Brigham E S,et al.Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors[J].Journal Physics,1993,97(45):11802-11810.Chemical of
    [28]Hu S Z,Ma L,You J G,et al.Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus[J].Science Surface Applied,2014,311(30):164-171.
    [29]Yan S C,Li Z S,Zou Z G.Photodegradation performance of g-C3N4fabricated by directly heating melamine[J].Langmuir,2009,25(17):10397-10401.
    [30]Xu J,Zhang L,Shi R,et al.Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J].Journal of,AChemistry Materials 2013,1(46):14766-14772.
    [31]Witoon T,Permsirivanich T,Kanjanasoontorn N,et al.Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu-ZnO-ZrO2/SO42--ZrO2 catalysts:Effects of sulfur-to-zirconia ratios hybrid[J].Catalysis Science&Technology,2015,5(4):2347-2357.
    [32]Li K X,Yan L S,Zeng Z X,et al.Fabrication of H3PW12O40-doped carbon nitride nanotubes by one-step hydrothermal treatment strategy and their efficient visible-light photocatalytic activity toward representative aqueous persistent organic pollutants degradation[J].Environmental B:Catalysis Applied,2014,156-157(9):141-152.
    [33]Zhang Y W,Liu J H,Wu G,et al.Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J].Nanoscale,2012,4(17):5300-5303.
    [34]Liu C,Jing L Q,He L M,et al.Phosphate-modified graphitic C3N4 as efficient photocatalyst for degrading colorless pollutants by promoting O2 adsorption[J].Communications Chemical,2014,50(16):1999-2001.
    [35]Xu Y,Xu H,Wang L,et al.The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity[J].Transactions Dalton,2013,42(21):7604-7613.
    [36]He B L,Dong B,Li H L.Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery[J].Electrochemistry Communications,2007,9(3):425-430.
    [37]Huang Q W,Tian S Q,Zeng D W,et al.Enhanced photocatalytic activity of chemically bonded tio2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond[J].Catalysis ACS,2013,3(7):1477-1485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700