Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions
  • 作者:Yu ; Gao ; Jun ; Huang ; Yuwen ; Liu ; Jawei ; Yan ; Bingwei ; Mao ; Shengli ; Chen
  • 英文作者:Yu Gao;Jun Huang;Yuwen Liu;Jawei Yan;Bingwei Mao;Shengli Chen;Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University;Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University;State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University;
  • 英文关键词:concentrated solutions;;ion dynamics;;ion volume effect;;chemical affinity;;ion-vacancy couple
  • 中文刊名:JBXG
  • 英文刊名:中国科学:化学(英文版)
  • 机构:Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University;Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University;State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University;
  • 出版日期:2019-03-12 09:32
  • 出版单位:Science China(Chemistry)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China (21673163, 21832004, 21802170);; financial support from Central South University (502045001, 20180020050002)
  • 语种:英文;
  • 页:JBXG201904017
  • 页数:6
  • CN:04
  • ISSN:11-5839/O6
  • 分类号:119-124
摘要
We present a conceptual framework for understanding and formulating ion transport in concentrated solutions, which pictures the ion transport as an ion-vacancy coupled charge transfer reaction. A key element in this picture is that the transport of an ion from an occupied to unoccupied site involves a transition state which exerts double volume exclusion. An ab initio random walk model is proposed to describe this process. Subsequent coarse-graining results in a continuum formula as a function of chemical potentials of the constituents, which are further derived from a lattice-gas model. The subtlety here is that what has been taken to be the chemical potential of the ion in the past is actually that of the ion-vacancy couple. By aid of this new concept, the driving force of ion transport is essentially the chemical affinity of the ion-vacancy coupled charge transfer reaction, which is a useful concept to unify transport and reaction, two fundamental processes in electrochemistry. This phenomenological model is parameterized for a specific material by the aid of first-principles calculations. Moreover, its extension to multiple-component systems is discussed.
        We present a conceptual framework for understanding and formulating ion transport in concentrated solutions, which pictures the ion transport as an ion-vacancy coupled charge transfer reaction. A key element in this picture is that the transport of an ion from an occupied to unoccupied site involves a transition state which exerts double volume exclusion. An ab initio random walk model is proposed to describe this process. Subsequent coarse-graining results in a continuum formula as a function of chemical potentials of the constituents, which are further derived from a lattice-gas model. The subtlety here is that what has been taken to be the chemical potential of the ion in the past is actually that of the ion-vacancy couple. By aid of this new concept, the driving force of ion transport is essentially the chemical affinity of the ion-vacancy coupled charge transfer reaction, which is a useful concept to unify transport and reaction, two fundamental processes in electrochemistry. This phenomenological model is parameterized for a specific material by the aid of first-principles calculations. Moreover, its extension to multiple-component systems is discussed.
引文
1 Richey FW,Dyatkin B,Gogotsi Y,Elabd YA.J Am Chem Soc,2013,135:12818-12826
    2 Simon P,Gogotsi Y.Acc Chem Res,2013,46:1094-1103
    3 Lee AA,Kondrat S,Kornyshev AA.Phys Rev Lett,2014,113:048701
    4 Kornyshev AA,Spohr E,Vorotyntsev MA.Electrochemical Interfaces:At the Border line.New York:Wiley,2002
    5 Bockris JO,Reddy AKN,Gamboa-Aldeco ME.Modern electrochemistry 2A.2nd Ed.New York:Kluwer Academic Publishers,2002
    6 Lee AA,Colby RH,Kornyshev AA.Soft Matter,2013,9:3767-3776
    7 Lu W,Fadeev AG,Qi B,Smela E,Mattes BR,Ding J,Spinks GM,Mazurkiewicz J,Zhou D,Wallace GG,MacFarlane DR,Forsyth SA,Forsyth M.Science,2002,297:983-987
    8 Baughman RH,Cui C,Zakhidov AA,Iqbal Z,Barisci JN,Spinks GM,Wallace GG,Mazzoldi A,de Rossi D,Rinzler AG,Jaschinski O,Roth S,Kertesz M.Science,1999,284:1340-1344
    9 Wang X,Mehandzhiyski AY,Arstad B,Van Aken KL,Mathis TS,Gallegos A,Tian Z,Ren D,Sheridan E,Grimes BA,Jiang DE,Wu J,Gogotsi Y,Chen D.J Am Chem Soc,2017,139:18681-18687
    10 Fedorov MV,Kornyshev AA.Chem Rev,2014,114:2978-3036
    11 Van Aken KL,Beidaghi M,Gogotsi Y.Angew Chem Int Ed,2015,54:4806-4809
    12 Giordani V,Tozier D,Tan H,Burke CM,Gallant BM,Uddin J,Greer JR,McCloskey BD,Chase GV,Addison D.J Am Chem Soc,2016,138:2656-2663
    13 Gadzuric S,Suh C,Gaune-Escard M,Rajan K.Metall Mat Trans A,2006,37:3411-3414
    14 Zhao Y,Daemen LL.J Am Chem Soc,2012,134:15042-15047
    15 Liu Z,Fu W,Payzant EA,Yu X,Wu Z,Dudney NJ,Kiggans J,Hong K,Rondinone AJ,Liang C.J Am Chem Soc,2013,135:975-978
    16 Fan L,Wei S,Li S,Li Q,Lu Y.Adv Energy Mater,2018,8:1702657
    17 Cogswell DA,Bazant MZ.Nano Lett,2013,13:3036-3041
    18 Malik R,Zhou F,Ceder G.Nat Mater,2011,10:587-590
    19 Suo L,Borodin O,Gao T,Olguin M,Ho J,Fan X,Luo C,Wang C,Xu K.Science,2015,350:938-943
    20 Kilic MS,Bazant MZ,Ajdari A.Phys Rev E,2007,75:021503
    21 Zhao H.Phys Rev E,2001,84:051504
    22 Bazant MZ,Kilic MS,Storey BD,Ajdari A.Adv Colloid Interface Sci,2009,152:48-88
    23 Kornyshev AA.J Phys Chem B,2007,111:5545-5557
    24 Borukhov I,Andelman D,Orland H.Phys Rev Lett,1997,79:435-438
    25 Wang H,Thiele A,Pilon L.J Phys Chem C,2013,117:18286-18297
    26 Ferguson TR,Bazant MZ.J Electrochem Soc,2012,159:A1967-A1985
    27 Lee AA,Kondrat S,Vella D,Goriely A.Phys Rev Lett,2015,115:106101
    28 Bikerman JJ.London Edinburgh Dublin Philos Mag J Sci,1942,33:384-397
    29 Riess I,Maier J.Phys Rev Lett,2008,100:20590
    30 Cahn JW,Hilliard JE.J Chem Phys,1958,28:258-267
    31 Braga MH,Ferreira JA,Stockhausen V,Oliveira JE,El-Azab A.JMater Chem A,2014,2:5470-5480
    32 Ravikumar B,Mynam M,Rai B.J Phys Chem C,2018,122:8173-8181
    33 Maldonado-Manso P,Losilla ER,Martínez-Lara M,Aranda MAG,Bruque S,Mouahid FE,Zahir M.Chem Mater,2003,15:1879-1885
    34 Fu J.J Am Ceram Soc,1997,80:1901-1903
    35 Zhang Y,Zhao Y,Chen C.Phys Rev B,2013,87:134303
    36 Abbott AP,Harris RC,Ryder KS.J Phys Chem B,2007,111:4910-4913
    37 Zhou F,Cococcioni M,Marianetti CA,Morgan D,Ceder G.Phys Rev B,2004,70:235121
    38 Morgan D,van der ven A,Ceder G.Electrochem Solid-State Lett,2004,7:A30
    39 Sun Y,Lu X,Xiao R,Li H,Huang X.Chem Mater,2012,24:4693-4703
    40 Islam MS,Driscoll DJ,Fisher CAJ,Slater PR.Chem Mater,2005,17:5085-5092
    41 Leonardi E,Angeli C.J Phys Chem B,2010,114:151-164
    42 Krishna R,Wesselingh JA.Chem Eng Sci,1997,52:861-911
    43 Krishna R,van Baten JM.Chem Eng Sci,2009,64:3159-3178
    44 Lee AA,Kondrat S,Oshanin G,A Kornyshev A.Nanotechnology,2014,25:315401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700