转录因子参与植物低温胁迫响应调控机理的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Response Mechanism of Transcription Factors Involved in Plant Cold Stress
  • 作者:肖玉洁 ; 李泽明 ; 易鹏飞 ; 胡日生 ; 张先文 ; 朱列书
  • 英文作者:XIAO Yu-jie;LI Ze-ming;YI Peng-fei;HU Ri-sheng;ZHANG Xian-wen;ZHU Lie-shu;College of Agronomy,Hunan Agricultural University;Central-South Agricultural Experiment Station of China Tobacco;College of Biological Science and Technology,Hunan Agricultural University;
  • 关键词:低温胁迫 ; 转录因子 ; 低温响应基因 ; 低温信号途径
  • 英文关键词:cold stress;;transcription factors;;cold stress response gene;;cold signaling pathway
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:湖南农业大学农学院;中国烟草中南农业试验站;湖南农业大学生物科学技术学院;
  • 出版日期:2018-12-26
  • 出版单位:生物技术通报
  • 年:2018
  • 期:v.34;No.317
  • 基金:中国烟草总公司湖南省公司重点科技项目(17-20Aa04);中国烟草总公司重点科技项目(110201302002)
  • 语种:中文;
  • 页:SWJT201812001
  • 页数:9
  • CN:12
  • ISSN:11-2396/Q
  • 分类号:7-15
摘要
低温胁迫对植物的地理分布和生长发育有着重要影响。当植物受到低温胁迫时,转录因子通过结合基因启动子上的顺式作用元件激活低温响应基因的表达,从而调控植物体内的信号转导通路来提高植物的耐低温性。着重主要介绍了AP2/ERF、NAC、WRKY、MYB、bZIP、ZFPs等转录因子家族参与植物低温胁迫响应的最新研究进展,并提出了一个转录因子通过与其他因子和启动子元件互作的方式参与低温胁迫响应的基因表达调控网络。
        Cold stress has an important influence on the geographical distribution and growth of plants. Under cold stress,transcription factor activate the cold responsive gene expressions by binding to the cis-acting elements of gene promoter,therefore improving the coldresistance of plants by regulating signal transduction pathways in plants. This review focuses on recent research progresses on transcriptionfactors AP2/ERF,NAC,WRKY,MYB,bZIP,and ZFPs involved in plant cold stress,and proposes a regulatory network that transcription factors participates in the cold stress by interacting with other factors and promoter elements while in gene expression.
引文
[1]Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of geneexpression in plants[J]. Trends in Plant Science, 2007, 12(10):444.
    [2]Zhang X, Fowler SG, Cheng H, et al. Freezing-sensitive tomato hasa functional CBF cold response pathway, but a CBF regulon thatdiffers from that of freezing-tolerant Arabidopsis[J]. The PlantJournal, 2004, 39(6):905.
    [3]Hernandez-Garcia CM, Finer JJ. Identification and validation ofpromoters and cis-acting regulatory elements[J]. Plant Science,2014, 217-218(1):109-119.
    [4]Tweneboah S, Oh SK. Biological roles of NAC transcription factorsin the regulation of biotic and abiotic stress responses in solanaceouscrops[J]. Journal of Plant Biotechnology, 2017, 44(1):1-11.
    [5]Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcriptionfactors:genome-wide comparative analysis among eukaryotes[J].Science, 2000, 290(5499):2105-2110.
    [6]Bai B, Wu J, Sheng WT, et al. Comparative analysis of anthertranscriptome profiles of two different rice male sterile linesgenotypes under cold stress[J]. International Journal of MolecularSciences, 2015, 16(5):11398.
    [7]Zhang ZJ, Huang RF. Enhanced tolerance to freezing in tobaccoand tomato overexpressing transcription factor TERF2/LeERF2 ismodulated by ethylene biosynthesis[J]. Plant Molecular Biology,2010, 73(3):241-249.
    [8]Xu ZS, Chen M, Li LC, et al. Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. Bulletinof Botany, 2011, 53(7):570-585.
    [9]李瑞梅,惠杜娟,刘姣,等.植物抗寒转录因子CBF和ICE研究进展[J].广东农业科学, 2012, 39(23):132-135.
    [10]Li XD, Zhuang KY, Liu ZM, et al. Overexpression of a novel NACtype tomato transcription factor, SlNAM1, enhances the chillingstress tolerance of transgenic tobacco[J]. Journal of PlantPhysiology, 2016, 204:54-65.
    [11]Zhuang L, Yuan X, Chen Y, et al. PpCBF3 from cold-tolerantkentucky bluegrass involved in freezing tolerance associated withup-regulation of cold-related genes in transgenic Arabidopsis thaliana[J]. PLoS One, 2015, 10(7):e0132928.
    [12]Wang L, Gao J, Qin X, et al. JcCBF2 gene from Jatropha curcasimproves freezing tolerance of Arabidopsis thaliana during the earlystage of stress[J]. Molecular Biology Reports, 2015, 42(5):937-945.
    [13]Morran S, Eini O, Pyvovarenko T, et al. Improvement of stresstolerance of wheat and barley by modulation of expression ofDREB/CBF factors[J]. Plant Biotechnology Journal, 2011, 9(2):230.
    [14]Sobkowiak A, Jończyk M, Adamczyk J, et al. Molecular foundationsof chilling-tolerance of modern maize[J]. BMC Genomics, 2016,17(1):125.
    [15]Ke YG, Yang ZJ, Yu SW, et al. Characterization of OsDREB6responsive to osmotic and cold stresses in rice[J]. Journal ofPlant Biology, 2016, 42(7):9264-9269.
    [16]Puranik S, Sahu PP, Srivastava PS, et al. NAC proteins:regulationand role in stress tolerance[J]. Trends in Plant Science, 2012,17(6):369-381.
    [17]Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NACfamily genes in Oryza sativa and Arabidopsis thaliana[J]. Genes&Genomes, 2003, 10(6):239.
    [18]Shao H, Wang H, Tang X. NAC transcription factors in plantmultiple abiotic stress responses:progress and prospects[J].Frontiers in Plant Science, 2015, 6(902):81.
    [19]Mao X, Zhang H, Qian X, et al. TaNAC2, a NAC-type wheattranscription factor conferring enhanced multiple abiotic stresstolerances in Arabidopsis[J]. Journal of Experimental Botany,2012, 63(8):2933-2946.
    [20]Yoo SY, Kim Y, Kim SY, et al. Control of flowering time and coldresponse by a NAC-domain protein in Arabidopsis[J]. PLoS One,2007, 2(7):e642.
    [21]Ma N, Zuo Y, Liang X, et al. The multiple stress-responsivetranscription factor SlNAC1 improves the chilling tolerance oftomato[J]. Physiologia Plantarum, 2013, 149(4):474-486.
    [22]Fang L, Su L, Sun X, et al. Expression of Vitis amurensis NAC26in Arabidopsis enhances drought tolerance by modulating jasmonicacid synthesis[J]. Journal of Experimental Botany, 2016, 67(9):2829-2845.
    [23]Tripathi P, Rabara RC, Rushton PJ. A systems biology perspectiveon the role of WRKY transcription factors in drought responses inplants[J]. Planta, 2014, 239(2):255-266.
    [24]Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34transcription factor mediates cold sensitivity of mature pollen inArabidopsis[J]. Journal of Experimental Botany, 2010, 61(14):3901-3914.
    [25]Zeng T, Kou Y, Liu H, et al. OsWRKY45 alleles play different rolesin abscisic acid signalling and salt stress tolerance but similar rolesin drought and cold tolerance in rice[J]. Journal of ExperimentalBotany, 2011, 62(14):4863.
    [26]Kim CY, Vo KTX, Cong DN, et al. Functional analysis of acold-responsive rice WRKY gene, OsWRKY71[J]. PlantBiotechnology Reports, 2016, 10(1):13-23.
    [27]Zhang Y, Yu H, Yang X, et al. CsWRKY46, a WRKY transcriptionfactor from cucumber, confers cold resistance in transgenic-plantby regulating a set of cold-stress responsive genes in an ABAdependent manner[J]. Plant Physiology&Biochemistry, 2016,108:478-487.
    [28]Wang Y, Shu Z, Wang W, et al. CsWRKY2, a novel WRKY genefrom Camellia sinensis, is involved in cold and drought stressresponses[J]. Biologia Plantarum, 2016, 60(3):1-9.
    [29]李濯雪,陈信波.植物诱导型启动子及相关顺式作用元件研究进展[J].生物技术通报, 2015, 31(10):8-15.
    [30]Zhai H, Bai X, Zhu Y, et al. A single-repeat R3-MYB transcriptionfactorMYBC1negativelyregulatesfreezingtoleranceinArabidopsis[J].Biochemical&BiophysicalResearchCommunications, 2010, 394(4):1018.
    [31]Pasquali G, Biricolti S, Locatelli F, et al. Osmyb4 expressionimproves adaptive responses to drought and cold stress intransgenic apples[J]. Plant Cell Reports, 2008, 27(10):1677.
    [32]Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2,is involved in salt, cold, and dehydration tolerance in rice[J].Journal of Experimental Botany, 2012, 63(7):2541.
    [33]Meissner M, Orsini E, Ruschhaupt M, et al. Mapping quantitativetrait loci for freezing tolerance in a recombinant inbred linepopulation of Arabidopsis thaliana accessions Tenela and C24reveals REVEILLE1 as negative regulator of cold acclimation[J].Plant Cell&Environment, 2013, 36(7):1256-1267.
    [34]Ding Z, Li S, An X, et al. Transgenic expression of MYB15 confersenhanced sensitivity to abscisic acid and improved droughttolerance in Arabidopsis thaliana[J]. Hereditas, 2009, 36(1):17-29.
    [35]Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors:their role in drought response mechanisms[J]. InternationalJournal of Molecular Sciences, 2015, 16(7):15811-15851.
    [36]Yang YN, Zhao G, Yue WQ, et al. Molecular cloning and geneexpression differences of the anthocyanin biosynthesis-relatedgenes in the red/green skin color mutant of pear(Pyrus communisL.)[J]. Tree Genetics&Genomes, 2013, 9(5):1351-1360.
    [37]Indeok H, Kumar MR, Kang JG, et al. Genome-wide identificationand characterization of bZIP transcription factors inbrassicaoleraceaunder cold stress[J]. BioMed Research International,2016, 2016(2016):1-18.
    [38]李田,孙景宽,刘京涛.植物转录因子家族在耐盐抗旱调控网络中的作用[J].生命科学, 2015, 27(2):217-227.
    [39]Ma Q, Dai X, Xu Y, et al. Enhanced tolerance to chilling stress inOsMYB3R-2 transgenic rice is mediated by alteration in cell cycleand ectopic expression of stress genes[J]. Plant Physiology,2009, 150(1):244-256.
    [40]Hossain MA, Jungil C, Han M, et al. The ABRE-binding bZIPtranscription factor OsABF2 is a positive regulator of abiotic stressand ABA signaling in rice[J]. Journal of Plant Physiology, 2010,167(17):1512.
    [41]Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5:a potential negative regulator of cold and drought stressresponse in rice[J]. Planta, 2012, 235(6):1157-1169.
    [42]曹红利,岳川,王新超,杨亚军. b ZIP转录因子与植物抗逆性研究进展[J].南方农业学报, 2012, 43(8):1094-1100.
    [43]Wang L, Cao H, Qian W, et al. Identification of a novel bZIPtranscription factor in Camellia sinensis as a negative regulatorof freezing tolerance in transgenic arabidopsis[J]. Annals ofBotany, 2017, 119(7):1195-1209.
    [44]Sun XL, Li Y, Cai H, et al. Arabidopsis bZIP1 transcription factorbinding to ABRE cis-element regulates abscisic acid signaltransduction[J]. Acta Agronomica Sinica, 2011, 37(4):612-619.
    [45]Liu DC, Qi WU, Wang YC, et al. Cloning and expression analysis ofPtrZPT2-2 from trifoliate orange(Poncirus trifoliata)[J]. ActaHorticulturae Sinica, 2014, 41(1):9-16.
    [46]Kim JC, Lee SH, Cheong YH, et al. A novel cold-inducible zincfinger protein from soybean, SCOF-1, enhances cold tolerance intransgenic plants[J]. Plant J, 2001, 25(3):247-259.
    [47]Yu GH, Jiang LL, Ma XF, et al. A soybean C2H2-type zincfinger gene GmZF1 enhanced cold tolerance in transgenicArabidopsis[J]. PLoS One, 2014, 9(10):e109399.
    [48]Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants[J].Cellular&Molecular Life Sciences, 2008, 65(7/8):1150-1160.
    [49]Sun SJ, Guo SQ, Yang X, et al. Functional analysis of a novelCys2/His2-type zinc finger protein involved in salt tolerance inrice[J]. Journal of Experimental Botany, 2010, 61(10):2807.
    [50]Doherty CJ, Buskirk HAV, Myers SJ, et al. Roles for ArabidopsisCAMTA transcription factors in cold-regulated gene expression andfreezing tolerance[J]. The Plant Cell, 2009, 21(3):972.
    [51]Ma Y, Dai X, Xu Y, et al. COLD1 confers chilling tolerance inrice[J]. Cell, 2015, 160(6):1209.
    [52]Abiri R, Shaharuddin NA, Maziah M, et al. Role of ethylene andthe APETALA 2/ethylene response factor superfamily in rice undervarious abiotic and biotic stress conditions[J]. Environmental&Experimental Botany, 2017, 134:33-44.
    [53]Shi Y, Tian S, Hou L, et al. Ethylene signaling negatively regulatesfreezing tolerance by repressing expression of CBF and type-AARR genes in Arabidopsis[J]. The Plant Cell, 2012, 24(6):2578-2595.
    [54]Niu YJ, Figueroa P, Browse J. Characterization of JAZ-interactingbHLH transcription factors that regulate jasmonate responses inArabidopsis[J]. Journal of Experimental Botany, 2011, 62(6):2143.
    [55]Hu Y, Jiang L, Wang F, et al. Jasmonate regulates the inducerof cbf expression-C-repeat binding factor/DRE binding factor1cascade and freezing tolerance in Arabidopsis[J]. The Plant Cell,2013, 25(8):2907-2924.
    [56]Wu LJ, Chen XL, Ren HY, et al. ERF protein JERF1 thattranscriptionally modulates the expression of abscisic acidbiosynthesis-related gene enhances the tolerance under salinity andcold in tobacco[J]. Planta, 2007, 226(4):.
    [57]Pil JS, Mi JK, Park JY, et al. Cold activation of a plasma membranetethered NAC transcription factor induces a pathogen resistanceresponse in Arabidopsis[J]. The Plant Journal, 2010, 61(4):661-671.
    [58]Agarwal M, Hao YJ, Kapoor A, et al. A R2R3 type MYBtranscription factor is involved in the cold regulation of CBF genesand in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49):37636-37645.
    [59]Cai WT, Yang YL, Wang WW, et al. Overexpression of a wheat(Triticum aestivum L.)bZIP transcription factor gene, TabZIP6,decreased the freezing tolerance of transgenic Arabidopsis seedlingsby down-regulating the expression of CBFs[J]. Plant Physiologyand Biochemistry, 2018, 124:100-111.
    [60]Luo X, Bai X, Zhu D, et al. GsZFP1, a new Cys2/His2-type zincfinger protein, is a positive regulator of plant tolerance to cold anddrought stress[J]. Planta, 2012, 235(6):1141-1155.
    [61]Hernandez-Garcia CM, Finer JJ. Identification and validation ofpromoters and cis-acting regulatory elements[J]. Plant ScienceAn International Journal of Experimental Plant Biology, 2014, 217-218(1):109-119.
    [62]Vysotskii DA, Ij VVL, Souer E, et al. ABF transcription factorsof Thellungiella salsuginea:Structure, expression profiles andinteraction with 14-3-3 regulatory proteins[J]. Plant Signaling&Behavior, 2013, 8(1):e22672.
    [63]Ma NN, Zuo YQ, Liang XQ, et al. The multiple stress-responsivetranscription factor SlNAC1 improves the chilling tolerance oftomato[J]. Physiologia Plantarum, 2013, 149(4):474-486.
    [64]Zou C, Sun K, Mackaluso JD, et al. Cis-regulatory code of stressresponsive transcription in Arabidopsis thaliana[J]. Proc NatlAcad Sci USA, 2011, 108(36):14992-14997.
    [65]Sazegari S, Niazi A, Ahmadi FS. A study on the regulatory networkwith promoter analysis for Arabidopsis DREB-genes[J].Bioinformation, 2015, 11(2):101-106.
    [66]HaNT,LeipnerJ,Guerra-PerazaO,etal.Article3:Characterization of the stress-induced gene ZmCOI6. 1 in maize:Expression and promoter sequences[J]. Tap Chi Sinh Hoc,2014, 31(3):71-80.
    [67]Wang Q, Qi W, Wang Y, et al. Isolation and identification of anAP2/ERF factor that binds an allelic cis-element of rice geneLRK6[J]. Genetics Research, 2011, 93(5):319-332.
    [68]Mishra S, Shukla A, Upadhyay S, et al. Identification, occurrence,and validation of DRE and ABRE Cis-regulatory motifs in thepromoter regions of genes of Arabidopsis thaliana[J]. Bulletin ofBotany, 2014, 56(4):388-399.
    [69]Yun KY, Park MR, Mohanty B, et al. Transcriptional regulatorynetwork triggered by oxidative signals configures the early responsemechanisms of japonica rice to chilling stress[J]. BMC PlantBiology, 2010, 10(1):16.
    [70]You J, Zhang L, Song B, et al. Systematic analysis and identificationof stress-responsive genes of the NAC gene family in Brachypodium distachyon[J]. PLoS One, 2015, 10(3):e0122027.
    [71]Lv X, Lan S, Guy KM, et al. Global expressions landscape of NACtranscription factor family and their responses to abiotic stresses inCitrullus lanatus[J]. Scientific Reports, 2016, 6:30574.
    [72]Peng X, Wu Q, Teng L, et al. Transcriptional regulation of the papermulberry under cold stress as revealed by a comprehensive analysisof transcription factors[J]. BMC Plant Biology, 2015, 15(1):108.
    [73]Zou C, Yu D. Analysis of the cold-responsive transcriptome in themature pollen of Arabidopsis[J]. Journal of Plant Biology, 2010,53(6):400-416.
    [74]An D, Yang J, Zhang P. Transcriptome profiling of low temperaturetreated cassava apical shoots showed dynamic responses of tropicalplant to cold stress[J]. BMC Genomics, 2012, 13(1):64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700