MdWRKY40介导提高苹果与拟南芥对轮纹病菌的免疫抗性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MdW RKY40 Mediated Improvement of the Immune Resistance of Apple and Arabidopsis thaliana to Botryosphaeria dothidea
  • 作者:周茜茜 ; 邱化荣 ; 何晓文 ; 王宪璞 ; 刘秀霞 ; 李保华 ; 吴树敬 ; 陈学森
  • 英文作者:ZHOU QianQian;QIU HuaRong;HE XiaoWen;WANG Xian Pu;LIU XiuXia;LI BaoHua;WU ShuJing;CHEN XueSen;College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology;College of Plant Health and Medicine, Qingdao Agricultural University;
  • 关键词:苹果 ; MdWRKY40 ; 水杨酸 ; 苹果轮纹病菌 ; 免疫抗性 ; 根系生长
  • 英文关键词:apple;;MdWRKY40;;salicylic acid(SA);;Botryosphaeria dothidea;;immune resistance;;root growth
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:山东农业大学园艺科学与工程学院/作物生物学国家重点实验室;青岛农业大学植物医学学院;
  • 出版日期:2018-11-01
  • 出版单位:中国农业科学
  • 年:2018
  • 期:v.51
  • 基金:国家自然科学基金(31272132);; 山东省泰山学者工程启动基金(tshw20120712);; 作物生物学国家重点实验室导向性课题(dxkt201713)
  • 语种:中文;
  • 页:ZNYK201821005
  • 页数:13
  • CN:21
  • ISSN:11-1328/S
  • 分类号:51-63
摘要
【目的】从‘富士’苹果中克隆MdWRKY40,研究其在水杨酸(SA)诱导条件下的表达模式及在苹果轮纹病抗病信号通路中的作用,为进一步揭示苹果的抗病机制提供理论依据。【方法】以‘富士’苹果为试材,克隆MdWRKY40的全长CDS序列,对其进行生物信息学分析,采用荧光定量PCR(qRT-PCR)分析其在苹果各组织中的表达水平,及对非生物胁迫SA的响应;研究外源SA处理对苹果叶片接种轮纹病菌(Botryosphaeria dothidea)的影响,并利用qRT-PCR检测病程相关蛋白基因的表达;将MdWRKY40在拟南芥中进行异源表达,对稳定表达的拟南芥幼苗叶片进行接菌处理,观察叶片发病程度及发病叶片数量,并采用qRT-PCR分析病程相关基因的表达;测量拟南芥幼苗的根系长度,并利用qRT-PCR检测生长素相关基因的表达。【结果】MdWRKY40包含长为858 bp完整的开放阅读框,编码286个氨基酸,预测其分子量为32.088 kD,等电点为8.15。系统进化树分析表明,MdWRKY40与白梨PbWRKY40序列相似性最高,亲缘关系最近,与拟南芥AtWRKY40在不同的分支上,亲缘关系较远,利用DANMAN软件进行MdWRKY40与AtWRKY40的多序列比对分析发现,MdWRKY40蛋白与AtWRKY40蛋白虽然都含有一个WRKYGQK保守结构域,但相似度仅为29.78%。qRT-PCR分析表明,MdWRKY40在根中的表达水平最高,在叶中的表达水平最低,并且在根、茎、叶中,SA均诱导了MdWRKY40的表达,且均呈现先升高后降低的趋势,在6 h时表达量最高;外源SA处理提高了苹果叶片对轮纹病菌的抗性,未处理的叶片发病率达92.59%,SA处理后发病率降至79.26%,并显著提高了病程相关蛋白基因MdPR2、MdPR5的表达量。与野生型相比,在拟南芥中异源过量表达MdWRKY40显著提高了拟南芥叶片对轮纹病菌的抗性,野生型拟南芥发病率达77.5%,而两个转基因拟南芥株系发病率仅为21.5%和17.4%,并显著提高了病程相关基因PR1、PR3、PR4的表达。过表达MdWRKY40的拟南芥植株根系生长受到抑制,培养7 d后转基因拟南芥主根长度分别是野生型拟南芥的39.9%和43.1%,培养10 d后主根长度分别是野生型拟南芥的58.5%和55.4%。基因表达结果显示,生长素合成相关基因AtTAA1和生长素运输相关基因AtPIN1、AtPIN2的表达水平在MdWRKY40过表达株系中显著低于野生型。【结论】MdWRKY40表达受SA和苹果轮纹病菌侵染诱导;MdWRKY40是苹果中重要的轮纹病抗病基因,该基因过表达显著提高对轮纹病菌的抗性;MdWRKY40具有调控植物根系生长发育的功能,可能通过下调生长素运输相关基因的表达影响植物根系生长发育。
        【Objective】The objective of this study is to clone MdWRKY40 from ‘Fuji' apple, research its expression pattern under salicylic acid(SA)-induced conditions and its role in the disease resistance pathway of Botryosphaeria dothidea, and to provide a theoretical basis for further revealing the disease resistance mechanism of apple. 【Method】 The full-length CDS sequence of MdWRKY40 was cloned from ‘Fuji' apple, and its bioinformatics analysis was carried out. Fluorescence quantitative PCR(qRT-PCR) was used to analyze the expression level in different apple tissues and the response to abiotic stress SA, to study the effect of exogenous SA treatment on apple leaves inoculated with pathogenic fungi B. dothidea, and to detect the expression of pathogenesis-related protein gene by qRT-PCR. MdWRKY40 was expressed heterologous in Arabidopsis thaliana, and the stably expressed A. thaliana seedlings were treated with B. dothidea to observe the degree of disease and the number of infected leaves. The expression of disease-associated genes was analyzed by qRT-PCR. The root length of A. thaliana seedlings was measured and the expression of auxin-related genes was detected by qRT-PCR. 【Result】 Md WRKY40 contains a complete open reading frame of 858 bp in length and encodes 286 amino acids. The predicted molecular weight is 32.088 kD and the isoelectric point is 8.15. Phylogenetic tree analysis showed that Md WRKY40 has the highest similarity with the PbWRKY40 sequence, and its genetic relationship is closest. Md WRKY40 and At WRKY40 locate in different branches, and its genetic relationship is far from that of AtWRKY40. The multiple sequence alignment analysis of Md WRKY40 and At WRKY40 by using DANMAN software revealed that both Md WRKY40 protein and At WRKY protein contain a WRKYGQK conserved domain, but similarity is only 29.78%. qRT-PCR analysis showed that the expression level of MdWRKY40 was the highest in root and lowest in leaf. SA induced MdWRKY40 expression in root, stem and leaf, and the expression all increased first and then decreased, reached the highest level at 6 h. Exogenous SA enhanced the resistance of apple leaves to B. dothidea, the incidence of untreated leaves reached 92.59%, and the incidence after SA treatment decreased to 79.26%, and significantly increased the expression of disease-associated protein genes MdPR2 and MdPR5. Compared with the wild type, the overexpression of MdWRKY40 in A. thaliana significantly increased the resistance of A. thaliana leaves to B. dothidea. The incidence of wild type A. thaliana reached 77.5%, while the incidence of two transgenic A. thaliana lines was only 21.5% and 17.4%, and significantly increased the expression of PR1, PR3, and PR4 genes associated with disease progression. The root growth of A. thaliana plants with overexpression of MdWRKY40 was inhibited. After 7 days of culture, the length of main root of transgenic A. thaliana was 39.9% and 43.1% respectively of that of wild type A. thaliana. After 10 days of culture, the length of main root of transgenic A. thaliana was 58.5% and 55.4% respectively of that of wild type A. thaliana. The expression level of the auxin synthesis-related gene AtTAA1 and auxin transport-related genes AtPIN1 and AtPIN2 was significantly lower in the Md WRKY40 overexpression lines than in the wild type.【Conclusion】The expression of MdWRKY40 was induced by the infection of SA and the pathogenic fungi B. dothidea. MdWRKY40 is an important disease resistance gene in apple. The overexpression of MdWRKY40 significantly increased the resistance to B. dothidea. MdWRKY40 has the function of regulating the growth and development of plant roots, which may affect the growth and development of plant roots by down-regulating the expression of auxin transport-related genes.
引文
[1]国立耘,李金云,李保华,张新忠,周增强,李广旭,王英姿,李晓军,黄丽丽,孙广宇,文耀东.中国苹果枝干轮纹病发生和防治情况.植物保护,2009,35(4):120-123.GUO L Y,LI J Y,LI B H,ZHANG X Z,ZHOU Z Q,LI G X,WANG Y Z,LI X J,HUANG L L,SUN G Y,WEN Y D.Investigations on the occurrence and chemical control of Botryosphaeria canker of apple in China.Plant Protection,2009,35(4):120-123.(in Chinese)
    [2]张芮.苹果MdWRKY33基因在轮纹病抗性形成中的作用机制研究[D].泰安:山东农业大学,2015.ZHANG R.The research on the mechanism of MdWRKY33 mediated disease resistance against the apple ring rot pathogenic fungi Botryosphaeria dothidea[D].Taian:Shandong Agricultural University,2015.(in Chinese)
    [3]TANG W,DING Z,ZHOU Z Q,WANG Y Z,GUO L Y.Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea.Plant Disease,2012,96(4):486-496.
    [4]LI H Y,CAO R B,MU Y T.In vitro inhibition of Botryosphaeria dothidea and Lasiodiplodia theobromae,and chemical control of gummosis disease of Japanese apricot and peach trees in Zhejiang Province,China.Crop Protection,1995,14(3):187-191.
    [5]LI Y,HAN L R,ZHANG Y,FU X,CHEN X,ZHANG L,MEI R,WANG Q.Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001.The Plant Pathology Journal,2013,29(2):168-173.
    [6]EULGEM T,SOMSSICH I E.Networks of WRKY transcription factors in defense signaling.Current Opinion of Plant Biology,2007,10(4):366-371.
    [7]薛华,张红岩,李小艳,赵云,王茂林.油菜矮秆突变WRKY转录因子cDNA克隆及表达分析.西北植物学报,2008,28(3):452-458.XUE H,ZHANG H Y,LI X Y,ZHAO Y,WANG M L.cDNA cloning and expression analysis of a dwarfism related WRKY transcription factor in Brassica napus L.Acta Botanica Boreali-Occidentalia Sinica,2008,28(3):452-458.(in Chinese)
    [8]YU D,CHEN C,CHEN Z.Evidence for an important role of WRKYDNA binding proteins in the regulation of NPR1 gene expression.The Plant Cell,2001,13(7):1527-1540.
    [9]SHEN Q H,SAIJO Y,MAUCH S,BISKUP C,BIERI S,KELLERB,SEKI H,üLKER B,SOMSSICH I E,SCHULZE-LEFERT P.Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses.Science,2007,315(5815):1098-1103.
    [10]HAN M,KIM C Y,LEE J,LEE S K,JEON J S.OsWRKY42 represses Os MT1d and induces reactive oxygen species and leaf senescence in rice.Molecules and Cells,2014,37(7):532-539.
    [11]DAI X,WANG Y,ZHANG W H.Os WRKY74,a WRKY transcription factor,modulates tolerance to phosphate starvation in rice.Journal of Experimental Botany,2016,67(3):947-960.
    [12]KIM C Y,VO K T X,NGUYEN C D,JEONG D H,LEE S K,KUMAR M,KIM S R,PARK S H,KIM J K,JEON J S.Functional analysis of a cold-responsive rice WRKY gene,Os WRKY71.Plant Biotechnology Reports,2016,10(1):13-23.
    [13]RAINERI J,WANG S,PELEG Z,BLUMWALD E,CHAN R L.The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress.Plant Molecular Biology,2015,88(4/5):401-413.
    [14]MIRABELLA R,RAUWERDA H,ALLMANN S,SCALA A,SPYROPOULOU E A,DE VRIES M,BOERSMA M R,BREIT T M,HARING M A,SCHUURINK R C.WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.The Plant Journal,2015,83(6):1082-1096.
    [15]ABBRUSCATO P,NEPUSZ T,MIZZI L,DEL CORVO M,MORANDINI P,FUMASONI I,MICHEL C,PACCANARO A,GUIDERDONI E,SCHAFFRATH U,MOREL J,PIFFANNELLI P,FAIVRE-RAMPANT O.OsWRKY22,a monocot WRKY gene,plays a role in the resistance response to blast.Molecular Plant Pathology,2012,13(8):828-841.
    [16]CHOI C,HWANG S H,FANG I R,KWON S I,PARK S R,AHNI,KIM J B,HWANG D J.Molecular characterization of Oryza sativa WRKY6,which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related(PR)10a promoter and confers reduced susceptibility to pathogens.New Phytologist,2015,208(3):846-859.
    [17]HAN M,RYU H S,KIM C Y,PARK D S,AHN Y K,JEON J S.Os WRKY30 is a transcription activator that enhances rice resistance to the Xanthomonas oryzae pathovar oryzae.Journal of Plant Biology,2013,56(4):258-265.
    [18]HWANG S H,KWON S I,JANG J Y,FANG I R,LEE H,CHOI C,PARK S R,AHN I,BAE S,HWANG D J.Os WRKY51,a rice transcription factor,functions as a positive regulator in defense response against Xanthomonas oryzae pv.oryzae.Plant Cell Reports,2016,35(9):1975-1985.
    [19]LAN A,HUANG J,ZHAO W,PENG Y,CHEN Z,KANG D.Asalicylic acid-induced rice(Oryza sativa L.)transcription factor OsWRKY77 is involved in disease resistance of Arabidopsis thaliana.Plant Biology,2013,15(3):452-461.
    [20]CIOLKOWSKI I,WANKE D,BIRKENBIHL R P,SOMSSICH I E.Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function.Plant Molecular Biology,2008,68(1/2):81-92.
    [21]RUSHTON P J,SOMSSICH I E,RINGLER P,SHEN Q J.WRKYtranscription factors.Trends in Plant Science,2010,15(5):247-258.
    [22]马丽娜,张雄,窦道龙,柴春月.本氏烟NbWRKY40亚家族转录因子抗病相关功能研究.植物病理学报,2016,46(6):791-802.MA L N,ZHANG X,DOU D L,CHAI C Y.Functional analysis of NbWRKY40 transcription factors of Nicotiana benthamiana.Acta Phytopathologica Sinica,2016,46(6):791-802.(in Chinese)
    [23]XU X,CHEN C,FAN B,CHEN Z.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18,WRKY40,and WRKY60 transcription factors.The Plant Cell,2006,18(5):1310-1326.
    [24]PANDEY S P,ROCCARO M,SCH?N M,LOGEMANN E,SOMSSICH I E.Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis.The Plant Journal,2010,64(6):912-923.
    [25]罗昌国,袁启凤,裴晓红,吴亚维,郑伟,章镇.富士苹果MdWRKY40b基因克隆及其对白粉病的抗性分析.西北植物学报,2013,33(12):2382-2387.LUO C G,YUAN Q F,PEI X H,WU Y W,ZHENG W,ZHANG Z.Cloning of MdWRKY40b gene in Fuji apple and its response to powdery mildew stress.Acta Botanica Boreali-Occidentalia Sinica,2013,33(12):2382-2387.(in Chinese)
    [26]刘威,张骏,顾冕,徐国华.水稻转录因子WRKY-P1对地上部株型和根系构型的影响.中国科技论文在线,2016.LIU W,ZHANG J,GU M,XU G H.The effect of a rice transcription factor WRKY-P1 on shoot and root architecture.Sciencepaper Online,2016.(in Chinese)
    [27]张高雷,李保华,董向丽,王彩霞,李桂舫,国立耘.苹果轮纹病瘤组织形态研究.植物病理学报,2011,41(1):98-101.ZHANG G L,LI B H,DONG X L,WANG C X,LI G F,GUO L Y.Microanatomy conformation of apple branch tumors caused by Botryosphaeria dothidea.Acta Phytopathologica Sinica,2011,41(1):98-101.(in Chinese)
    [28]ZHANG X,HENRIQUES R,LIN S S,NIU Q W,CHUA N H.Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method.Nature Protocols,2006,1(2):641-646.
    [29]WU S,LU D,KABBAGE M,WEI H L,SWINGLE B,RECORDS AR,DICKMAN M,HE P,SHAN L.Bacterial effector HopF2suppresses Arabidopsis innate immunity at the plasma membrane.Molecular Plant-Microbe Interactions,2011,24(5):585-593.
    [30]CAI H,YANG S,YAN Y,XIAO Z,CHENG J,WU J,QIU A,LAI Y,MOU S,GUAN D,HUANG R,HE S.CaWRKY6 transcriptionally activates CaWRKY40,regulates Ralstonia solanacearum resistance,and confers high-temperature and high-humidity tolerance in pepper.Journal of Experimental Botany,2015,66(11):3163-3174.
    [31]WANG Y,DANG F,LIU Z,WANG X,EULGEM T,LAI Y,YU L,SHE J,SHI Y,LIN J,CHEN C,GUAN D,QIU A,HE S.CaWRKY58,encoding a group I WRKY transcription factor of Capsicum annuum,negatively regulates resistance to Ralstonia solanacearum infection.Molecular Plant Pathology,2013,14(2):131-144.
    [32]ZHENG Z Y,QAMAR S A,CHEN Z X,MENGISTE T.Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.The Plant Journal,2006,48(4):592-605.
    [33]石亚莉,周会玲,唐永萍,贺军花,马利菁.水杨酸诱导苹果采后灰霉病抗性研究.西北农林科技大学学报(自然科学版),2018,46(2):84-91,103.SHI Y L,ZHOU H L,TANG Y P,HE J H,MA L J.Induced resistance of postharvest apples to Botrytis cinerea induced by salicylic acid treatment.Journal of Northwest A&F University(Natural Science Edition),2018,46(2):84-91,103.(in Chinese)
    [34]KAZAN K.Diverse roles of jasmonates and ethylene in abiotic stress tolerance.Trends in Plant Science,2015,20(4):219-229.
    [35]KHAN M I,FATMA M,PER T S,ANJUM N A,KHAN N A.Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants.Frontiers in Plant Science,2015,6:462.
    [36]RAMAMOORTHY R,JIANG S Y,KUMAR N,VENKATESH P N,RAMACHANDRAN S.A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments.Plant and Cell Physiology,2008,49(6):865-879.
    [37]邱化荣,周茜茜,何晓文,张宗营,张世忠,陈学森,吴树敬.基于转录组分析苹果水杨酸特异响应基因MdWRKY40的启动子鉴定.中国农业科学,2017,50(20):3970-3990.QIU H R,ZHOU Q Q,HE X W,ZHANG Z Y,ZHANG S Z,CHEN XS,WU S J.Identification of MdWRKY40 promoter specific response to salicylic acid by transcriptome sequencing.Scientia Agricultura Sinica,2017,50(20):3970-3990.(in Chinese)
    [38]ROBATZEK S,SOMSSICH I E.Targets of At WRKY6 regulation during plant senescence and pathogen defense.Genes and Development,2002,16(9):1139-1149.
    [39]GU Y,LI W,JIANG H,WANG Y,GAO H,LIU M,CHEN Q,LAI Y,HE C.Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size.Journal of Experimental Botany,2017,68(11):2717-2729.
    [40]ZHANG J,PENG Y,GUO Z.Constitutive expression of pathogeninducible Os WRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants.Cell Research,2008,18(4):508-521.
    [41]WEI L,WANG H,YU D.Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under shortday conditions.Molecular Plant,2016,9(11):1492-1503.
    [42]CHENG Y,AHAMMED G J,YU J,YAO Z,RUAN M,YE Q,LI Z,WANG R,FENG K,ZHOU G,YANG Y,DIAO W,WAN H.Putative WRKYs associated with regulation of fruit ripening revealed by detailed expression analysis of the WRKY gene family in pepper.Scientific Reports,2016,6:39000.
    [43]YANG Y,CHI Y,WANG Z,ZHOU Y,FAN B,CHEN Z.Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76in plant growth and development.Journal of Experimental Botany,2016,67(15):4727-4742.
    [44]DEVAIAH B N,KARTHIKEYAN A S,RAGHOTHAMA K G.WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis.Plant Physiology,2007,143(4):1789-1801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700