硫同位素在岩浆Cu-Ni-PGE硫化物矿床成因研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Application of Sulfur Isotope in the Genesis of Magmatic Cu-Ni-PGE Sulfide Deposits
  • 作者:汤庆艳 ; 鲍坚 ; 赵瑛
  • 英文作者:TANG Qing-yan;BAO Jian;ZHAO Ying;School of Earth Sciences,Key Laboratory of Mineral Resources in Western China(Gansu Province),Lanzhou University;
  • 关键词:岩浆Cu-Ni-PGE硫化物矿床 ; 太古宙 ; 成矿物质来源 ; 硫同位素
  • 英文关键词:magmatic Cu-Ni-PGE sulfide deposit;;Archean;;the source of ore-forming materials;;sulfur isotope
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:兰州大学地质科学与矿产资源学院甘肃省西部矿产资源重点实验室;
  • 出版日期:2019-01-23 17:13
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金资助项目(41872073,41472070);; 甘肃省科技计划项目(18JR3RA266);; 兰州大学中央高校基本科研业务费专项资金资助项目(lzujbky-2017-77)
  • 语种:中文;
  • 页:KYDH201902024
  • 页数:10
  • CN:02
  • ISSN:52-1102/P
  • 分类号:232-241
摘要
岩浆Cu-Ni-PGE硫化物矿床形成的重要过程是硫化物熔体的熔离,而关键在于成矿岩浆中硫的过饱和。判断岩浆Cu-Ni-PGE硫化物矿床中硫来源最直接有效的方法就是研究其硫同位素特征。当矿床的硫同位素值超出了地幔硫同位素的组成范围,揭示了壳源硫的混入。如果矿床硫同位素值δ~(34)S落入地幔值的范围内,则需要结合围岩硫同位素组成、并考虑岩浆房中是否发生了硫同位素交换反应来进一步判断是否有围岩硫的加入。异常的Δ~(33)S值主要出现在太古宙沉积硫化物中,利用δ~(34)S与Δ~(33)S相结合可识别样品中是否存在太古宙岩石中来源的硫;然而,一些太古宙岩石中硫化物Δ~(33)S值也可以在0‰附近;在一些后太古宙岩石的硫化物中也发现了异常的Δ~(33)S值;因此在根据Δ~(33)S值来判断S是否来源于太古宙岩石时应谨慎。仔细测定围岩和潜在的混染源的硫同位素组成对于准确评价岩浆Cu-Ni-PGE硫化物矿床中S的来源是非常关键的。硫同位素和其他同位素如镍同位素、铜同位素、铁同位素相结合也许对于认识岩浆Cu-Ni-PGE硫化物矿床中成矿物质来源及成矿岩浆演化过程能够提供新的思路。
        Magmatic Cu-Ni-PGE(platinum group element)sulfide deposits are produced by segregation and concentration of immiscible sulfide liquid from mafic or ultramafic magmas,which depends on the sulfur saturation in the magma.Sulfur isotope is a powerful tracer of the source of sulfur in the genesis of magmatic Cu-Ni-PGE sulfide deposits.Addition crustal S would generally result in sulfur isotopic composition of deposits different from the mantle values.However,if δ~(34)S values are similar to mantle-derived sulfur,the addition of crustal sulfur should be evaluated by sulfur isotope composition of the country rocks and sulfur isotope exchange reaction between magma and country rocks in the magma chamber. Anomalous Δ~(33)S values are found primarily in sulfides in most Archean rocks,the Δ~(33)S values in conjunction with δ~(34)S values provides an effective means in evaluating the contribution of S from the Archean country rocks.However,Δ~(33)S values of sulfides in some Archean rocks may also be near 0‰; and rare occurrences of nonzero Δ~(33)S values have been identified in sulfides from younger rocks,and hence care should be taken in the evaluation of S derivation from Archean rocks based solely on Δ~(33)S values.Systematic study of the S isotope composition of country rocks and potential contaminants are vital in deciphering the sources of sulfur for the formation of magmatic Cu-Ni-PGE sulfide deposits.The combination of multiple sulfur isotopes and other isotopes, such as Ni,Cu and Fe isotopes,may provide new knowledge for the understanding of the source of ore-forming materials and processes of magma evolution.
引文
Arndt N, Lesher C M, Czamanske G K. 2005. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. In: Hedenquist J W, Thompson J F H, Goldfarb R J, Richards J P, eds. Economic Geology, 100th Anniversary Volume. Denver, 5-24
    Barnes S J, Lightfoot P C. 2005. Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents. In: Hedenquist J W, Thompson J F H, Goldfarb R J, Richards J P, eds. Economic Geology, 100th Anniversary Volume. Denver, 179-213
    Baroni M, Thiemens M H, Delmas R J, Savarino J. 2007. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science, 315(5808): 84-87
    Bekker A, Barley M E, Fiorentini M L, Rouxel O J, Rumble D, Beresford S W. 2009. Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science, 326(5956): 1086-1089
    Canfield D E, Raiswell R. 1999. The evolution of the sulfur cycle. American Journal of Science, 299(7-9): 697-723
    Chen L M, Song X Y, Keays R R, Tian Y L, Wang Y S, Deng Y F, Xiao J F. 2013. Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: Insights from platinum group element geochemistry. Economic Geology, 108(8): 1793-1811
    Clayton D D, Ramadurai S. 1977. On presolar meteoritic sulphides. Nature, 265(5593): 427-428
    Ding T, Valkiers S, Kipphardt H, De Bièvre P, Taylor P D P, Gonfiantini R, Krouse R. 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta, 65(15): 2433-2437
    Ding X, Ripley E M, Shirey S B, Li C S. 2012. Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu-Ni-(PGE) deposit, Midcontinent rift system, Upper Michigan. Geochimica et Cosmochimica Acta, 89: 10-30
    Donoghue K A, Ripley E M, Li C S. 2014. Sulfur isotope and mineralogical studies of Ni-Cu sulfide mineralization in the Bovine Igneous Complex intrusion, Baraga basin, northern Michigan. Economic Geology, 109(2): 325-341
    Duan J, Li C S, Qian Z Z, Jiao J G, Ripley E M, Feng Y Q. 2016. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Mineralium Deposita, 51(4): 557-574
    Farquhar J, Jackson T L, Thiemens M H. 2000a. A 33S enrichment in ureilite meteorites: Evidence for a nebular sulfur component. Geochimica et Cosmochimica Acta, 64(10): 1819-1825
    Farquhar J, Bao H M, Thiemens M. 2000b. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289(5480): 756-758
    Farquhar J, Wing B A, McKeegan K D, Harris J W, Cartigny P, Thiemens M H. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298(5602): 2369-2372
    Farquhar J, Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters, 213(1-2): 1-13
    Gao J F, Zhou M F, Lightfoot P C, Qu W J. 2012. Heterogeneous Os isotope compositions in the Kalatongke sulfide deposit, NW China: The role of crustal contamination. Mineralium Deposita, 47(7): 731-738
    Hiebert R S, Bekker A, Wing B A, Rouxel O J. 2013. The role of paragneiss assimilation in the origin of the Voisey’s Bay Ni-Cu sulfide deposit, Labrador: Multiple S and Fe isotope evidence. Economic Geology, 108(8): 1459-1469
    Hiebert R S, Bekker A, Houlé M G, Wing B A, Rouxel O J. 2016. Tracing sources of crustal contamination using multiple S and Fe isotopes in the Hart komatiite-associated Ni-Cu-PGE sulfide deposit, Abitibi greenstone belt, Ontario, Canada. Mineralium Deposita, 51(7): 919-935
    Hill R, Roeder P. 1974. The Crystallization of spinel from basaltic liquid as a function of oxygen fugacity. The Journal of Geology, 82(6): 709-729
    Hulston J R, Thode H G. 1965. Variations in the 33S, 34S, and 36S contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research, 70(14): 3475-3484
    Keays R R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 34(1-3): 1-18
    Keays R R, Lightfoot P C. 2010. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: Evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineralium Deposita, 45(3): 241-257
    Labidi J, Cartigny P, Birck J L, Assayag N, Bourrand J J. 2012. Determination of multiple sulfur isotopes in glasses: A reappraisal of the MORB δ34S. Chemical Geology, 334: 189-198
    Labidi J, Cartigny P, Moreira M. 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature, 501(7466): 208-211
    Labidi J, Cartigny P, Jackson M G. 2015. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘mantle array’ in chemical geodynamics. Earth and Planetary Science Letters, 417: 28-39
    Li C S, Ripley E M. 2009. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: Empirical equations and example applications. Economic Geology, 104(3): 405-412
    Li C S, Zhang M J, Fu P E, Qian Z Z, Hu P Q, Ripley E M. 2012. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism?. Mineralium Deposita, 47(1-2): 51-67
    Li C S, Zhang Z W, Li W Y, Wang Y L, Sun T, Ripley E M. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos, 216-217: 224-240
    Liu S Q, Li Y B, Ju Y W, Liu J, Liu J M, Shi Y L. 2018. Equilibrium nickel isotope fractionation in nickel sulfide minerals. Geochimica et Cosmochimica Acta, 222: 1-16
    Lü L S, Mao J W, Li H B, Pirajno F, Zhang Z H, Zhou Z H. 2011. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China. Ore Geology Reviews, 43(1): 106-119
    MacLean W H. 1969. Liquidus phase relations in the FeS-FeO-Fe3O4-SiO2 system, and their application in geology. Economic Geology, 64(8): 865-884
    Maier W D, Barnes S J, Ripley E M. 2011. The Kabanga Ni sulfide deposits, Tanzania: A review of ore-forming processes. In: Li C S, Ripley E M, eds. Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis. Society of Economic Geologists, Littleton, 217-234
    Malitch K N, Latypov R M, Badanina I Y, Sluzhenikin S F. 2014. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 204: 172-187
    Mavrogenes J A, O’Neill H S C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180
    Melnik O, Sparks R S J. 2005. Controls on conduit magma flow dynamics during lava dome building eruptions. Journal of Geophysical Research, 110(B2): B02209
    Mungall J E, Brenan J M. 2014. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochimica et Cosmochimica Acta, 125: 265-289
    Naldrett A J. 2004. Magmatic sulfide deposits: Geology, geochemistry and exploration. Berlin, Heidelberg: Springer-Verlag, 1-725
    Naldrett A J. 2011. Fundamentals of magmatic sulfide deposits. In: Li C S, Ripley E M, eds. Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis. Littleton, CO: Society of Economic Geologists, 1-50
    Ohmoto H, Watanabe Y, Ikemi H, Poulson S R, Taylor B E. 2006. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature, 442(7105): 908-911
    Ono S. 2008. Multiple-sulphur isotope biosignatures. Space Science Reviews, 135(1-4): 203-220
    Palme H, O’Neill H S C. 2014. Cosmochemical estimates of mantle composition. In: Holland H, Turekian K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 1-39
    Park Y R, Ripley E M, Miller Jr J D, Li C S, Mariga J, Shafer P. 2004. Stable isotopic constraints on fluid-rock interaction and Cu-PGE-S redistribution in the Sonju Lake intrusion, Minnesota. Economic Geology, 99(2): 325-338
    Patten C, Barnes S J, Mathez E A, Jenner F E. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358: 170-188
    Peach C L, Mathez E A, Keays R R. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389
    Peng B, Sun F Y, Li B L, Wang G, Li S J, Zhao T F, Li L, Zhi Y B. 2016. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni-Cu sulfide deposits. Ore Geology Reviews, 73: 13-28
    Penniston-Dorland S C, Wing B A, Nex P A M, Kinnaird J A, Farquhar J, Brown M, Sharman E R. 2008. Multiple sulfur isotopes reveal a primary magmatic origin for the Platreef PGE deposit, Bushveld Complex, South Africa. Geology, 36(12): 979-982
    Penniston-Dorland S C, Mathez E A, Wing B A, Farquhar J, Kinnaird J A. 2012. Multiple sulfur isotope evidence for surface-derived sulfur in the Bushveld Complex. Earth and Planetary Science Letters, 337-338: 236-242
    Rai V K, Jackson T L, Thiemens M H. 2005. Photochemical mass-independent sulfur isotopes in Achondritic meteorites. Science, 309(5737): 1062-1065
    Ripley E M, Alawi J A. 1988. Petrogenesis of pelitic xenoliths at the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota, U.S.A. Lithos, 21(2): 143-159
    Ripley E M. 1999. Systematics of sulphur and oxygen isotopes in mafic igneous rocks and related Cu-Ni-PGE mineralization. In: Keays R R, Lesher C M, Lightfoot P C, Farrow C E G, eds. Dynamic Processes in Magmatic Ore Deposits and their Application in Mineral Exploration. Geological Association of Canada, Sudbury, 13: 133-158
    Ripley E M, Li C S, Shin D. 2002. Paragneiss assimilation in the genesis of magmatic Ni-Cu-Co sulfide mineralization at Voisey’s Bay, Labrador: δ34S, δ13C, and Se/S evidence. Economic Geology, 97(6): 1307-1318
    Ripley E M, Li C S. 2003. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits. Economic Geology, 99(3): 635-641
    Ripley E M, Sarkar A, Li C S. 2005. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China. Economic Geology, 100(7): 1349-1361
    Ripley E M, Li C S. 2007. Applications of stable and radiogenic isotopes to magmatic Cu-Ni-PGE deposits: Examples and cautions. Earth Science Frontiers, 14(5): 124-132
    Ripley E M, Li C S. 2013. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?. Economic Geology, 108(1): 45-58
    Ripley E M, Li C S. 2017. A review of the application of multiple S isotopes to magmatic Ni-Cu-PGE deposits and the significance of spatially variable Δ33S values. Economic Geology, 112(4): 983-991
    Ripley E M, Wernette B W, Ayre A, Li C S, Smith J M, Underwood B S, Keays R R. 2017. Multiple S isotope studies of the Stillwater Complex and country rocks: An assessment of the role of crustal S in the origin of PGE enrichment found in the J-M Reef and related rocks. Geochimica et Cosmochimica Acta, 214: 226-245
    Seat Z, Beresford S W, Grguric B A, Gee M A M, Grassineau N V. 2009. Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits: Evidence from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia. Economic Geology, 104(4): 521-538
    Sharman E R, Penniston-Dorland S C, Kinnaird J A, Nex P A M, Brown M, Wing B A. 2013. Primary origin of marginal Ni-Cu-(PGE) mineralization in layered intrusions: Δ33S evidence from the Platreef, Bushveld, South Africa. Economic Geology, 108(2): 365-377
    Song X Y, Zhou M F, Tao Y, Xiao J F. 2008. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China. Chemical Geology, 253(1-2): 38-49
    Song X Y, Keays R R, Zhou M F, Qi L, Ihlenfeld C, Xiao J F. 2009. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochimica et Cosmochimica Acta, 73(2): 404-424
    Song X Y, Li X R. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Miner Deposita, 44(3): 303-327
    Song X Y, Yi J N, Chen L M, She Y W, Liu C Z, Dang X Y, Yang Q A, Wu S K. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Economic Geology, 111(1): 29-55
    Tang Q Y, Li C S, Zhang M J, Ripley E M, Wang Q L. 2014. Detrital zircon constraint on the timing of amalgamation between Alxa and Ordos, with exploration implications for Jinchuan-type Ni-Cu ore deposit in China. Precambrian Research, 255: 748-755
    Tang Q Y, Bao J, Dang Y X, Ke S, Zhao Y. 2018. Mg-Sr-Nd isotopic constraints on the genesis of the giant Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Earth and Planetary Science Letters, 502: 221-230
    Tao Y, Li C S, Hu R Z, Ripley E M, Du A D, Zhong H. 2007. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan Large Igneous Province, SW China. Contributions to Mineralogy and Petrology, 153(3): 321-337
    Tao Y, Li C S, Song X Y, Ripley E M. 2008. Mineralogical, petrological, and geochemical studies of the Limahe mafic-ultramatic intrusion and associated Ni-Cu sulfide ores, SW China. Mineralium Deposita, 43(8): 849-872
    Wendlandt R F. 1982. Sulfide saturation of basalt and andesite melts at high pressures and temperatures. American Mineralogist, 67: 877-885
    Wilkin R T, Bornhorst T J. 1992. Geology and geochemistry of granitoid rocks in the Archean Northern complex, Michigan, U.S.A. Canadian Journal of Earth Sciences, 29(8): 1674-1685
    Xia M Z, Jiang C Y, Li C S, Xia Z D. 2013. Characteristics of a newly discovered Ni-Cu sulfide deposit hosted in the Poyi ultramafic intrusion, Tarim craton, NW China. Economic Geology, 108(8): 1865-1878
    Xie W, Song X Y, Chen L M, Deng Y F, Zheng W Q, Wang Y S, Ba D H, Yin M H, Luan Y. 2014. Geochemistry insights on the genesis of the subduction-related Heishan magmatic Ni-Cu-(PGE) deposit, Gansu, northwestern China, at the southern margin of the Central Asian Orogenic Belt. Economic Geology, 109(6): 1563-1583
    Zhang Z W, Tang Q Y, Li C S, Wang Y L, Ripley E M. 2017. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China. Mineralium Deposita, 52(1): 51-68
    李文渊, 张照伟, 陈博. 2015. 小岩体成大矿的理论与找矿实践意义:以西北地区岩浆铜镍硫化物矿床. 中国工程科学, 17(2): 29-34
    刘子燕. 2017. 硫同位素在矿床研究中的应用. 四川有色金属, (1): 21-23
    吕林素, 李宏博, 周振华, 徐立国, 杨小男, 毛冰. 2017. 吉林红旗岭富家矿床矿石矿物化学和硫同位素特征:对铜镍硫化物矿床成因及成矿过程的约束. 地球学报, 38(2): 193-207
    马红梅, 李院生, 姜苏, 安春雷. 2010. 非质量硫同位素分馏效应研究进展. 地球科学与环境学报, 32(2): 176-182, 194
    马生明, 朱立新, 苏磊, 汤丽玲, 刘艳鹏. 2016. 矿化剂元素硫(S)与成矿. 地质学报, 90(9): 2427-2436
    宋谢炎, 胡瑞忠, 陈列锰. 2009. 铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义. 地学前缘, 16(4): 287-305
    宋谢炎, 肖家飞, 朱丹, 朱维光, 陈列锰. 2010. 岩浆通道系统与岩浆硫化物成矿研究新进展. 地学前缘, 17(1): 153-163
    孙赫, 唐冬梅, 秦克章, 范新, 肖庆华, 苏本勋. 2009. 亲铜元素的地球化学行为研究进展及其在岩浆硫化物矿床中的应用. 地质论评, 55(6): 840-850
    孙立吉. 2013. 红旗岭铜镍硫化物矿床地质地球化学特征及找矿技术方法研究. 博士学位论文. 长春: 吉林大学, 1-157
    孙涛, 钱壮志, 党新生, 焦建刚, 闫海卿, 王建中. 2010. 喀拉通克铜镍矿床硫同位素组成特征及其地质意义. 地球科学与环境学报, 32(4): 344-349
    王润民, 赵昌龙. 1991. 新疆喀拉通克一号铜镍硫化物矿床. 北京: 地质出版社, 1-298
    王焰, 王坤, 邢长明, 魏博, 董欢, 曹永华. 2017. 二叠纪峨眉山地幔柱岩浆成矿作用的多样性. 矿物岩石地球化学通报, 36(3): 404-417
    姚家栋. 1988. 西昌地区硫化铜(铂)镍矿床成因. 重庆: 重庆出版社, 1-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700