分布式多机器人运动控制的离散事件系统方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distributed approaches to motion control of multiple robots via discrete event systems
  • 作者:周远 ; 胡核算 ; 刘杨 ; 林尚威
  • 英文作者:ZHOU Yuan;HU He-suan;LIU Yang;LIN Shang-wei;School of Computer Science and Engineering, Nanyang Technological University;School of Electro-Mechanical Engineering, Xidian University;
  • 关键词:多机器人系统 ; 运动控制 ; 离散事件系统 ; 分布式算法
  • 英文关键词:multi-robot systems;;motion control;;discrete event systems;;distributed algorithms
  • 中文刊名:KZLY
  • 英文刊名:Control Theory & Applications
  • 机构:南洋理工大学计算机科学与技术学院;西安电子科技大学机电工程学院;
  • 出版日期:2018-01-15
  • 出版单位:控制理论与应用
  • 年:2018
  • 期:v.35
  • 基金:国家自然科学基金项目(61573265,61203037,51305321);; 新加坡教育部Tier 1科研基金(2014–T1–001–147);新加坡教育部Tier 2科研基金(MOE2015–T2–2–049)资助~~
  • 语种:中文;
  • 页:KZLY201801014
  • 页数:11
  • CN:01
  • ISSN:44-1240/TP
  • 分类号:113-123
摘要
传统多机器人系统的运动控制主要依赖于机器人的动力学方程或运动学方程,通过求解微分方程组来获得机器人的输入控制信号.随着系统中机器人数量的增加和运行环境的复杂化,动力学方程很难描述多机器人系统的运动行为,且无法很好地解决诸如死锁等逻辑故障.本文简略综述了国内外的研究现状,重点介绍笔者所在研究组开展的关于离散事件系统方法在多机器人运动控制方面的应用性研究工作.其动机在于:1)基于离散事件系统方法的运动控制能够有效地解决系统运行过程中产生的诸如死锁等逻辑故障.首先,利用离散事件系统模型对多机器人系统的运动进行建模,从而降低计算复杂性;其次,基于所得离散事件系统模型,设计分布式安全运动控制算法,使各个机器人可以自主地、无碰撞地、无死锁地运动;设计分布式鲁棒运动控制算法,使得失效的机器人对系统的影响最小.2)基于离散事件系统方法的运动控制策略可以结合传统的基于运动学方程的运动控制方法,从而使系统不但能够避免顶层的逻辑故障,而且能够确定机器人执行器的输入信号.
        Classical motion control of multi-robot systems is dependent on the dynamic or kinematic equations, where the input control signals for robots are obtained by solving a set of differential equations. With the increase of the number of robots in a system and the more complexity of environment, it is hard to describe the behavior of robots exactly by only applying the dynamic equations and cannot deal well with some logical problems, such as deadlocks. This paper summarizes the state-of-the-art motion control technologies, especially emphasizes our research work with regard to the application of discrete event systems(DESs) on the motion control of multi-robot systems. The motivations are as follows.1) DES-based motion control can deal with the logical problems, such as deadlocks, during the evolution of the system.First, use the DES models to formalize the motion of a multi-robot system; this can reduce the computation complexity.Second, based on the DES models, design distributed safe control algorithms for robots to avoid collisions and deadlocks,as well as guarantee that they can move independently; design distributed robust control algorithms such that the failures of robots have the least detrimental effect on the system. 2) DES-based motion control can be combined with the kinematic equation-based motion control such that the system can not only resolve high-level logical problems but also determine the input signals of the actuators of robots.
引文
[1]KHAMIS A,HUSSEIN A,ELMOGY A.Multi-robot task allocation:a review of the state-of-the-art[C]//Koub?aa A,Mart?nez-de Dios JR.Cooperative Robots and Sensor Networks.Switzerand:Springer,2015:31-51.
    [2]GUERRERO-BONILLA L,PROROK A,KUMAR V.Formations for resilient robot teams[J].IEEE Robotics and Automation Letters,2017,2(2):841-848.
    [3]PROROK A,HSIEH M A,KUMAR V.Formalizing the impact of diversity on performance in a heterogeneous swarm of robots[C]//Proceedings of IEEE International Conference on Robotics and Automation.Stockholm,Sweden:IEEE,2016:5364-5371.
    [4]LOIANNO G,MULGAONKAR Y,BRUNNER C,et al.A swarm of flying smartphones[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems.Chicago,USA:IEEE,2016:1681-1688.
    [5]SASKA M,VONASEK V,CHUDOBA J,et al.Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles[J].Journal of Intelligent&Robotic Systems,2016,84(1/2/3/4):469-492.
    [6]TURPIN M,MICHAEL N,KUMAR V.Capt:concurrent assignment and planning of trajectories for multiple robots[J].The International Journal of Robotics Research,2014,33(1):98-112.
    [7]PIMENTA L C,PEREIRA G A,MICHAEL N,et al.Swarm coordination based on smoothed particle hydrodynamics technique[J].IEEE Transactions on Robotics,2013,29(2):383-399.
    [8]SCHWAGER M,DAMES P,RUS D,et al.A multi-robot control policy for information gathering in the presence of unknown hazards[C]//Christensen H I,Khatib O.Robotics Research:The 15th International Symposium ISRR.Cham,Switzerland:Springer,2017:455-472.
    [9]GIL S,KUMAR S,MAZUMDER M,et al.Guaranteeing spoofresilient multi-robot networks[J].Autonomous Robots,2017,41(6):1383-1400.
    [10]ALONSO-MORA J,MONTIJANO E,SCHWAGER M,et al.Distributed multi-robot formation control among obstacles:a geometric and optimization approach with consensus[C]//Proceedings of IEEEInternational Conference on Robotics and Automation.Stockholm,Sweden:IEEE,2016:5356-5363.
    [11]ALONSO-MORA J,BAKER S,RUS D.Multi-robot navigation in formation via sequential convex programming[C]//Proceedings of2015 IEEE/RSJ International Conference on Intelligent Robots and Systems.Hamburg,Germany:IEEE,2015:4634-4641.
    [12]SOLTERO D E,SCHWAGER M,RUS D.Decentralized path planning for coverage tasks using gradient descent adaptive control[J].The International Journal of Robotics Research,2014,33(3):401-425.
    [13]ULUSOY A,SMITH S L,DING X C,et al.Optimality and robustness in multi-robot path planning with temporal logic constraints[J].The International Journal of Robotics Research,2013,32(8):889-911.
    [14]SMITH S L,SCHWAGER M,RUS D.Persistent robotic tasks:monitoring and sweeping in changing environments[J].IEEE Transactions on Robotics,2012,28(2):410-426.
    [15]CHEN Y,DING X C,STEFANESCU A,et al.Formal approach to the deployment of distributed robotic teams[J].IEEE Transactions on Robotics,2012,28(1):158-171.
    [16]YAN Z,JOUANDEAU N,CHERIF A A.A survey and analysis of multi-robot coordination[J].International Journal of Advanced Robotic Systems,2013,10(12):399:1-399:18.
    [17]HOPCROFT J E,SCHWARTZ J T,SHARIR M.On the complexity of motion planning for multiple independent objects;PSPACE-hardness of the“warehouseman’s problem”[J].International Journal of Robotics Research,1984,3(4):76-88.
    [18]REIF J H.Complexity of the mover’s problem and generalizations[C]//Proceedings of the 20th Annual Symposium on Foundations of Computer Science.Washington,DC,USA:IEEE,1979:421-427.
    [19]LATOMBE J C.Robot Motion Planning[M].New York,USA:Springer,2012.
    [20]CHOSET H,LYNCH K M,KAVRAKI L,et al.Principles of Robot Motion:Theory,Algorithms,and Implementations[M].Boston,MA,USA:MIT Press,2005.
    [21]HOY M,MATVEEV A S,SAVKIN A V.Algorithms for collisionfree navigation of mobile robots in complex cluttered environments:A survey[J].Robotica,2015,33(3):463-497.
    [22]KLOETZER M,MAHULEA C,GONZALEZ R.Optimizing cell decomposition path planning for mobile robots using different metrics[C]//Proceedings of International Conference on System Theory,Control and Computing.Cheile Gradistei,Romania:IEEE,2015:565-570.
    [23]ACAR E U,CHOSET H,RIZZI A A,et al.Morse decompositions for coverage tasks[J].The International Journal of Robotics Research,2002,21(4):331-344.
    [24]PIVTORAIKO M,KNEPPER R A,KELLY A.Differentially constrained mobile robot motion planning in state lattices[J].Journal of Field Robotics,2009,26(3):308-333.
    [25]PIVTORAIKO M,KELLY A.Kinodynamic motion planning with state lattice motion primitives[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.San Francisco,CA,USA:IEEE,2011:2172-2179.
    [26]PIVTORAIKO M,MELLINGER D,KUMAR V.Incremental microUAV motion replanning for exploring unknown environments[C]//Proceedings of IEEE International Conference on Robotics and Automation.Karlsruhe,Germany:IEEE,2013:2452-2458.
    [27]KLOETZER M,BELTA C.Temporal logic planning and control of robotic swarms by hierarchical abstractions[J].IEEE Transactions on Robotics,2007,23(2):320-330.
    [28]SAHA I,RAMAITHITIMA R,KUMAR V,et al.Automated composition of motion primitives for multi-robot systems from safe LTL specifications[C]//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.Chicago,IL,USA:IEEE,2014:1525-1532.
    [29]KRNJAK A,DRAGANJAC I,BOGDAN S,et al.Decentralized control of free ranging AGVs in warehouse environments[C]//Proceedings of IEEE International Conference on Robotics and Automation.Seattle,WA,USA:IEEE,2015:2034-2041.
    [30]PREPARATA F P,SHAMOS M I.Computational Geometry:An Introduction[M].New York:Springer,1985.
    [31]CHEN Yan jie,WANG Yao nan,ZHONG Hang,et al.Improved geometrical learning planning for service robot in dynamic environment[J].Control Theory&Applications,2015,32(2):162-168.(陈彦杰,王耀南,钟杭,等.动态环境中服务机器人的改进型地图学习规划[J].控制理论与应用,2015,32(2):162-168.)
    [32]BHATTACHARYA P,GAVRILOVA M L.Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path[J].IEEE Robotics&Automation Magazine,2008,15(2):58-66.
    [33]LOZANO-PEREZ T,WESLEY M A.An algorithm for planning collision-free paths among polyhedral obstacles[J].Communications of the ACM,1979,22(10):560-570.
    [34]ZHOU D,WANG Z,BANDYOPADHYAY S,et al.Fast,on-line collision avoidance for dynamic vehicles using buffered voronoi cells[J].IEEE Robotics and Automation Letters,2017,2(2):1047-1054.
    [35]KAVRAKI L E,SVESTKA P,LATOMBE J C,et al.Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J].IEEE Transactions on Robotics and Automation,1996,12(4):566-580.
    [36]ELBANHAWI M,SIMIC M.Sampling-based robot motion planning:A review[J].IEEE Access,2014,2:56-77.
    [37]ARSLAN O,BERNTORP K,TSIOTRAS P.Sampling-based algorithms for optimal motion planning using closed-loop prediction[C]//Proceedings of IEEE International Conference on Robotics and Automation.Singapore:IEEE,2017:4991-4996.
    [38]LAVALLE S M.Rapidly-exploring random trees:a new tool for path planning[R].Ames,IA,USA:Iowa State University,1998.
    [39]BRUCE J,VELOSO M.Real-time randomized path planning for robot navigation[C]//Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems.Lausanne,Switzerland:IEEE,2002:2383-2388.
    [40]ZHANG Botao,LI Jiadong,LIU Shirong.Rapidly-exploring random trees motion planning for non-holonomic robot with collision-test and regression mechanism[J].Control Theory&Applications,2016,33(7):870-878.(张波涛,李加东,刘士荣.采用碰撞测试和回归机制的非完整约束机器人快速扩展随机树运动规划[J].控制理论与应用,2016,33(7):870-878.)
    [41]NG J,BRAUNL T.Performance comparison of bug navigation algorithms[J].Journal of Intelligent&Robotic Systems,2007,50(1):73-84.
    [42]CETIN O,ZAGLI I,YILMAZ G.Establishing obstacle and collision free communication relay for UAVs with artificial potential fields[J].Journal of Intelligent&Robotic Systems,2013,69(1/2/3/4):361-372.
    [43]FIORINI P,SHILLER Z.Motion planning in dynamic environments using velocity obstacles[J].The International Journal of Robotics Research,1998,17(7):760-772.
    [44]VAN DEN BERG J,GUY S J,LIN M,et al.Reciprocal n-body collision avoidance[C]//Proceedings of the 14th International Symposium on Robotics Research.Berlin,Germany:Springer,2011:3-19.
    [45]LIU Yang,YU Shuyou,GUO Yang,et al.Receding horizon control for path following problems of wheeled mobile robots[J].Control Theory&Applications,2017,34(4):424-432.(刘洋,于树友,郭洋,等.基于滚动时域优化的轮式移动机器人路径跟踪问题研究[J].控制理论与应用,2017,34(4):424-432.)
    [46]ZHAO Juanping,GAO Xianwen,FU Xiuhui,et al.Improved ant colony algorithm of path planning for mobile robot[J].Control Theory&Applications,2011,28(4):458-461.(赵娟平,高宪文,符秀辉,等.移动机器人路径规划的改进蚁群优化算法[J].控制理论与应用,2011,28(4):458-461.)
    [47]ABICHANDANI P,FORD G,BENSON H Y,et al.Mathematical programming for multi-vehicle motion planning problems[C]//Proceedings of IEEE International Conference on Robotics and Automation.Saint Paul,MN,USA:IEEE,2012:3315-3322.
    [48]MORGAN D,CHUNG S J,HADAEGH F Y.Model predictive control of swarms of spacecraft using sequential convex programming[J].Journal of Guidance,Control,and Dynamics,2014,37(6):1725-1740.
    [49]HYUN N S P,VELA P A,VERRIEST E I.A new framework for optimal path planning of rectangular robots using a weighted Lp norm[J].IEEE Robotics and Automation Letters,2017,2(3):1460-1465.
    [50]CHEN Y F,LIU M,EVERETT M,et al.Decentralized noncommunicating multiagent collision avoidance with deep reinforcement learning[C]//Proceedings of IEEE International Conference on Robotics and Automation.Singapore:IEEE,2017:285-292.
    [51]LI Z,DENG J,LU R,et al.Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2016,46(6):740-749.
    [52]GOMEZ-BRAVO F,CUESTA F,OLLERO A,et al.Continuous curvature path generation based onβ-spline curves for parking manoeuvres[J].Robotics and Autonomous Systems,2008,56(4):360-372.
    [53]CHEN Cheng,HE Yuqing,BU Chunguang,et al.Feasible trajectory generation for autonomous vehicles based on quartic Bezier curve[J].Acta Automatica Sinica,2015,41(3):486-496.(陈成,何玉庆,卜春光,等.基于四阶贝塞尔曲线的无人车可行轨迹规划[J].自动化学报,2015,41(3),486-496.)
    [54]WANG X,KLOETZER M,MAHULEA C,et al.Collision avoidance of mobile robots by using initial time delays[C]//Proceedings of IEEE Conference on Decision and Control.Osaka,Japan:IEEE,2015:324-329.
    [55]RODRIGUEZ-SEDA E J,TANG C,SPONG M W,et al.Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing[J].International Journal of Robotics Research,2014,33(12):1569-1592.
    [56]SOLTERO D E,SMITH S L,RUS D.Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.San Francisco,CA,USA:IEEE,2011:3645-3652.
    [57]HU H S,SU R,ZHOU M C,et al.Polynomially complex synthesis of distributed supervisors for large scale AMS using Petri nets[J].IEEETransactions on Control Systems Technology,2015,24(5):1610-1622.
    [58]LI Z W,WU N Q,ZHOU M C.Deadlock control of automated manufacturing systems based on Petri nets-a literature review[J].IEEETransactions on Systems,Man,and Cybernetics:Applications and Reviews,2012,42(4):437-462.
    [59]LEE C C,LIN J T.Deadlock prediction and avoidance based on Petri nets for zone-control automated guided vehicle systems[J].International Journal of Production Research,1995,33(12):3249-3265.
    [60]YALCIN A,BOUCHER T O.Deadlock avoidance in flexible manufacturing systems using finite automata[J].IEEE Transactions on Robotics and Automation,2002,16(4):424-429.
    [61]REVELIOTIS S,ROSZKOWSKA E.Conflict resolution in freeranging multi-vehicle systems:a resource allocation paradigm[J].IEEE Transanctions on Robotics,2011,27(2):283-296.
    [62]ROSZKOWSKA E,REVELIOTIS S.A distributed protocol for motion coordination in free-range vehicular systems[J].Automatica,2013,49(6):1639-1653.
    [63]DU N,HU H S,LIU Y.Robust control of automated manufacturing systems with assembly operations using Petri nets[C]//Proceedings of IEEE International Conference on Robotics and Automation.Stockholm,Sweden:IEEE,2016:3632-3638.
    [64]CHENG Y,HU H S,LIU Y.Robust supervisor synthesis for automated manufacturing systems using Petri nets[C]//Proceedings of IEEEInternational Conference on Automation Science and Engineering.Gothenburg,Sweden:IEEE,2015:1029-1035.
    [65]SCHITTKOWSKI K,ZILLOBER C.Sequential convex programming methods[C]//MARTI K,KALL P.Stochastic Programming:Numerical Techniques and Engineering Applications.New York,US-A:Springer,1995:123-141.
    [66]CHEN Y,CUTLER M,HOW J P.Decoupled multiagent path planning via incremental sequential convex programming[C]//Proceedings of IEEE International Conference on Robotics and Automation.Seattle,WA,USA:IEEE,2015:5954-5961.
    [67]ZHOU Y,HU H S,LIU Y,et al.Collision and deadlock avoidance in multi-robot systems:a distributed approach[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,47(7):1712-1726.
    [68]ZHOU Y,HU H S,LIU Y,et al.A real-time and fully distributed approach to motion planning for multirobot systems[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017.[Online]http://ieeexplore.ieee.org/document/8055437/.
    1https://www.kumarrobotics.org/research/
    2http://danielarus.csail.mit.edu/index.php/about-daniela-2/research-2/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700