磁辐射3D非稳态流动体系的传热强化:Al和γ-Al_2O_3纳米粒子的对比研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat transfer intensification in hydromagnetic and radiative 3D unsteady flow regimes: A comparative theoretical investigation for aluminum and γ-aluminum oxides nanoparticles
  • 作者:Naveed ; AHMED ; ADNAN ; Umar ; KHAN ; Syed ; Zulfiqar ; Ali ; ZAIDI ; Imran ; FAISAL ; Syed ; Tauseef ; MOHYUD-DIN
  • 英文作者:Naveed AHMED;ADNAN;Umar KHAN;Syed Zulfiqar Ali ZAIDI;Imran FAISAL;Syed Tauseef MOHYUD-DIN;Department of Mathematics, Faculty of Sciences, HITEC University;Department of Mathematics, Mohi-ud-Din Islamic University;Department of Mathematics and Statistics, Hazara University;Department of Mathematics, COMSATS University Islamabad,Abbottabad Campus;Department of Mathematics, Taibah University;
  • 关键词:传统流体 ; 铝和铝氧化物 ; 磁场 ; 热辐射 ; Runge-Kutta方案 ; 剪切应力 ; 局部热传递速率
  • 英文关键词:conventional fluids;;aluminum and γ-aluminum oxides;;magnetic field;;thermal radiation;;Runge-Kutta scheme;;shear stress;;local rate of heat transfer
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:Department of Mathematics, Faculty of Sciences, HITEC University;Department of Mathematics, Mohi-ud-Din Islamic University;Department of Mathematics and Statistics, Hazara University;Department of Mathematics, COMSATS University Islamabad,Abbottabad Campus;Department of Mathematics, Taibah University;
  • 出版日期:2019-05-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:v.26
  • 语种:英文;
  • 页:ZNGY201905016
  • 页数:17
  • CN:05
  • ISSN:43-1516/TB
  • 分类号:217-233
摘要
本文研究了水和乙二醇基纳米流体的胶体性质。考虑了洛伦兹力和热辐射的影响,通过相似变化,完成了控制方程的无量纲转化。然后,应用龙格-库塔法,对流动模型的非线性特性进行数值分析,对有关流速、温度、流线、等温线等流动参数的特性进行图解分析。结果表明,洛伦兹力有利于旋转速度,不利于其他旋转参数。体积分数和热辐射参数对Al和γ-Al_2O_3纳米流体的温度有正相关强化作用。此外,对于较高的旋转参数,研究其反向流动问题。与文献结果进行了比较,结果显示具有较高的吻合度。旋转有利于流体的流动速度,辐射流体越多,流体温度越高,而且体积分数的增加提高了热导率和电导率。
        This article investigates the colloidal study for water and ethylene glycol based nanofluids. The effects of Lorentz forces and thermal radiation are considered. The process of non-dimensionalities of governing equations is carried out successfully by means of similarity variables. Then, the resultant nonlinear nature of flow model is treated numerically via Runge-Kutta scheme. The characteristics of various pertinent flow parameters on the velocity,temperature, streamlines and isotherms are discussed graphically. It is inspected that the Lorentz forces favors the rotational velocity and rotational parameter opposes it. Intensification in the nanofluids temperature is observed for volumetric fraction and thermal radiation parameter and dominating trend is noted for γ-aluminum nanofluid.Furthermore, for higher rotational parameter, reverse flow is investigated. To provoke the validity of the present work,comparison between current and literature results is presented which shows an excellent agreement. It is examined that rotation favors the velocity of the fluid and more radiative fluid enhances the fluid temperature. Moreover, it is inspected that upturns in volumetric fraction improves the thermal and electrical conductivities.
引文
[1]CRANE L J.Flow past a stretching plate[J].Zeitschrift für Angewandte Mathematik und Physik,1970,21:645-647.
    [2]WANG C Y.The three-dimensional flow due to a stretching flat surface[J].Phys Fluids,1984,27:1915.
    [3]ANDERSSON H I.MHD flow of a viscoelastic fluid past a stretching surface[J].Acta Mechanica,1992,95:227-230.
    [4]CARRAGHER P,CRANE L J.Heat transfer on a continuous stretching sheet[J].ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,1982,62:564-565.
    [5]CHOI S.Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-newtonians flows[J].ASME,1995,66:99-105.
    [6]SHEIKHOLESLAMI M.Numerical investigation of MHDnanofluid free convective heat transfer in a porous tilted enclosure[J].Engineering Computations,2017,34:1939-1955.
    [7]RASHIDI M M,GANESH N V,HAKEEM A,GANGA B,LORENZINI G.Influences of an effective Prandtl number model on nano boundary layer flow ofγ-Al2O3-H2O andγ-Al2O3-C2H6O2 over a vertical stretching sheet[J].International Journal of Heat and Mass Transfer,2016,98:616-623.
    [8]KHAN U,ADNAN,AHMED N,MOHYUD-DIN S T.3DSqueezed flow ofγAl2O3-H2O andγAl2O3-C2H6 Nanofluids:A numerical study[J].International Journal of Hydrogen Energy,2017,42:24620-24633.
    [9]AHMED N,ADNAN,KHAN U,MOHYUD-DIN S T.Influence of an effective prandtl number model on squeezed flow ofγAl2O3-H2O andγAl2O3C2H6O2 nanofluids[J].Journal of Molecular Liquids,2017,238:447-454.
    [10]SELIMEFENDIGIL F,?ZTOP H F.Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation[J].Journal of the Taiwan Institute of Chemical Engineers,2017,70:168-178.
    [11]SELIMEFENDIGIL F,OZTOP H F.Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall[J].International Journal of Heat and Mass Transfer,2017,110:231-247.
    [12]SELIMEFENDIGIL F,OZTOP H F,CHAMKHA A J.Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder[J].International Communications in Heat and Mass Transfer,2017,87:40-51.
    [13]SELIMEFENDIGIL F,OZTOP H F.Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder[J].International Journal of Heat and Mass Transfer,2014,78:741-754.
    [14]SELIMEFENDIGIL F,OZTOP H F.Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity[J].International Journal of Heat and Mass Transfer,2019,129:265-277.
    [15]SELIMEFENDIGIL F,OZTOP H F.Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders[J].International Journal of Heat and Mass Transfer,2018,117:331-343.
    [16]SHEHZAD S A,HUSSAIN T,HAYAT,T,RAMZAN M,ALSAEDI A.Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation[J].Journal of Central South University,2015,22:360-367.
    [17]SHEHZAD S A,HAYAT T,ALHUTHALI M S,ASGHARS.MHD three-dimensional flow of Jeffrey fluid with Newtonian heating[J].Journal of Central South University,2014,21:1428-1433.
    [18]ASHRAF M B,HAYAT T,ALSAEDI A,SHEHZAD S A.Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation[J].Journal of Central South University,2015,22:1114-1123.
    [19]HAYAT T,ASHRAF M B,ALSAEDI A,SHEHZAD S.Convective heat and mass transfer effects in threedimensional flow of Maxwell fluid over a stretching surface with heat source[J].Journal of Central South University,2015,22:717-726.
    [20]KHAN U,AHMED N,MOHYUD-DIN S T.Numerical investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes[J].Applied Thermal Engineering,2017,113:1107-1117.
    [21]GANESH N V,ABDUL HAKEEM A K,GANGA B.Acomparative theoretical study on Al2O3 and c-Al2O3nanoparticles with different base fluids over a stretching sheet[J].Advanced Powder Technology,2016,27:436-441.
    [22]AIZA G,KHAN I,SHAFIE S.Energy transfer in mixed convection mhd flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium[J].Nanoscale Research Letters,2015,10:490.DOI:10.1186/s11671-015-1144-4.
    [23]AHMED N,ADNAN,KHAN U,MOHYUD-DIN S T.Unsteady radiative flow of chemically reacting fluid over a convectively heated stretchable surface with cross-diffusion gradients[J].International Journal of Thermal Sciences,2017,121:182-191.
    [24]MUNAWAR S,MEHMOOD A,ALI A.Three-dimensional squeezing flow in a rotating channel of lower stretching porous wall[J].Computers and Mathematics with Applications,2012,64:1575-1586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700