Visible Raman and Brillouin lasers from a microresonator/ZBLAN-fiber hybrid system
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Visible Raman and Brillouin lasers from a microresonator/ZBLAN-fiber hybrid system
  • 作者:SHUISEN ; JIANG ; CHANGLEI ; GUO ; KAIJUN ; CHE ; ZHENGQIAN ; LUO ; TUANJIE ; DU ; HONGYAN ; FU ; HUIYING ; XU ; ZHIPING ; CAI
  • 英文作者:SHUISEN JIANG;CHANGLEI GUO;KAIJUN CHE;ZHENGQIAN LUO;TUANJIE DU;HONGYAN FU;HUIYING XU;ZHIPING CAI;Department of Electronic Engineering, Xiamen University;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Department of Electronic Engineering, Xiamen University;
  • 出版日期:2019-05-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(11674269,91750115)
  • 语种:英文;
  • 页:GZXJ201905013
  • 页数:7
  • CN:05
  • ISSN:31-2126/O4
  • 分类号:90-96
摘要
Raman and Brillouin lasers based on a high-quality(high-Q) whispering gallery mode microresonator(WGMR)are usually achieved by employing a tunable single-frequency laser as a pump source. Here, we experimentally demonstrate visible Raman and Brillouin lasers using a compact microresonator/ZrF_4-BaF_2-LaF_3-AlF_3-NaF(ZBLAN)-fiber hybrid system by incorporating a WGMR with a fiber-compatible distributed Bragg reflector/fiber Bragg grating to form a Fabry–Perot(F-P) fiber cavity and using a piece of Pr:ZBLAN fiber as gain medium.The high-Q silica-microsphere not only offers a Rayleigh-scattering-induced backreflection to form the ~635 nm red laser oscillation in the F-P fiber cavity, but also provides a nonlinear gain in the WGMR itself to generate either stimulated Raman scattering or stimulated Brillouin scattering. Up to six-order cascaded Raman lasers at0.65 μm, 0.67 μm, 0.69 μm, 0.71 μm, 0.73 μm, and 0.76 μm are achieved, respectively. Moreover, a Brillouin laser at 635.54 nm is clearly observed. This is, to the best of our knowledge, the first demonstration of visible microresonator-based lasers created by combining a Pr:ZBLAN fiber. This structure can effectively extend the laser wavelength in the WGMR to the visible waveband and may find potential applications in underwater communication, biomedical diagnosis, microwave generation, and spectroscopy.
        Raman and Brillouin lasers based on a high-quality(high-Q) whispering gallery mode microresonator(WGMR)are usually achieved by employing a tunable single-frequency laser as a pump source. Here, we experimentally demonstrate visible Raman and Brillouin lasers using a compact microresonator/ZrF_4-BaF_2-LaF_3-AlF_3-NaF(ZBLAN)-fiber hybrid system by incorporating a WGMR with a fiber-compatible distributed Bragg reflector/fiber Bragg grating to form a Fabry–Perot(F-P) fiber cavity and using a piece of Pr:ZBLAN fiber as gain medium.The high-Q silica-microsphere not only offers a Rayleigh-scattering-induced backreflection to form the ~635 nm red laser oscillation in the F-P fiber cavity, but also provides a nonlinear gain in the WGMR itself to generate either stimulated Raman scattering or stimulated Brillouin scattering. Up to six-order cascaded Raman lasers at0.65 μm, 0.67 μm, 0.69 μm, 0.71 μm, 0.73 μm, and 0.76 μm are achieved, respectively. Moreover, a Brillouin laser at 635.54 nm is clearly observed. This is, to the best of our knowledge, the first demonstration of visible microresonator-based lasers created by combining a Pr:ZBLAN fiber. This structure can effectively extend the laser wavelength in the WGMR to the visible waveband and may find potential applications in underwater communication, biomedical diagnosis, microwave generation, and spectroscopy.
引文
1.K.J.Vahala,“Optical microcavities,”Nature 424,839-846(2003).
    2.L.He,S.Ozdemir,and L.Yang,“Whispering gallery microcavity lasers,”Laser Photon.Rev.7,60-82(2013).
    3.J.Zhu,S.Ozdemir,Y.Xiao,L.Li,L.He,D.Chen,and L.Yang,“Onchip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,”Nat.Photonics 4,46-49(2010).
    4.T.J.Kippenberg and K.J.Vahala,“Cavity optomechanics:backaction at the mesoscale,”Science 321,1172-1176(2008).
    5.Z.Shen,Z.Zhou,C.Zou,F.Sun,G.Guo,C.Dong,and G.Guo,“Observation of high-Q optomechanical modes in the mounted silica microspheres,”Photon.Res.3,243-247(2015).
    6.G.Lin,A.Coillet,and Y.K.Chembo,“Nonlinear photonics with high-Qwhispering-gallery-mode resonators,”Adv.Opt.Photon.9,828-890(2017).
    7.J.Snow,S.Qian,and R.Chang,“Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,”Opt.Lett.10,37-39(1985).
    8.S.Spillane,T.J.Kippenberg,and K.J.Vahala,“Ultralow-threshold Raman laser using aspherical dielectric microcavity,”Nature 415,621-623(2002).
    9.B.Min,T.J.Kippenberg,and K.J.Vahala,“Compact,fibercompatible,cascaded Raman laser,”Opt.Lett.28,1507-1509(2003).
    10.F.Vanier,M.Rochette,N.Godbout,and Y.Peter,“Raman lasing in As2S3high-Q whispering gallery mode resonators,”Opt.Lett.38,4966-4969(2013).
    11.F.Vanier,Y.Peter,and M.Rochette,“Cascaded Raman lasing in packaged high quality As2S3microspheres,”Opt.Express 22,28731-28739(2014).
    12.B.Li,Y.Xiao,M.Yan,W.R.Clements,and Q.Gong,“Low-threshold Raman laser from an on-chip,high-Q,polymer-coated microcavity,”Opt.Lett.38,1802-1804(2013).
    13.T.J.Kippenberg,S.M.Spillane,B.Min,and K.J.Vahala,“Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,”IEEE J.Sel.Top.Quantum Electron.10,1219-1228(2004).
    14.G.Lin,S.Diallo,J.M.Dudley,and Y.K.Chembo,“Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,”Opt.Express 24,14880-14894(2016).
    15.T.J.Kippenberg,S.Spillane,D.K.Armani,and K.J.Vahala,“Ultralow-threshold microcavity Raman laser on a microelectronic chip,”Opt.Lett.29,1224-1226(2004).
    16.Y.Ooka,Y.Yang,J.Ward,and S.Chormaic,“Raman lasing in a hollow,bottle-like microresonator,”Appl.Phys.Express 8,092001(2015).
    17.I.Grudinin,A.Matsko,and L.Maleki,“Brillouin lasing with a CaF2whispering gallery mode resonator,”Phys.Rev.Lett.102,043902(2009).
    18.M.Asano,Y.Takeuchi,S.Ozdemir,R.Ikuta,L.Yang,N.Imoto,and T.Yamamoto,“Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,”Opt.Express24,12082-12092(2016).
    19.C.Guo,K.Che,Z.Cai,S.Liu,G.Gu,C.Chu,H.Fu,Z.Luo,and H.Xu,“Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,”Opt.Lett.40,4971-4974(2015).
    20.P.Del’Haye,A.Schliesser,O.Arcizet,T.Wilken,R.Holzwarth,and T.J.Kippenberg,“Optical frequency comb generation from a monolithic microresonator,”Nature 450,1214-1217(2007).
    21.Y.Yang,X.Jiang,S.Kasumie,G.Zhao,L.Xu,J.Ward,L.Yang,and S.Chormaic,“Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,”Opt.Lett.41,5266-5269(2013).
    22.S.Lee,D.Oh,Q.Yang,B.Shen,H.Wang,K.Yang,Y.Lai,X.Yi,X.Li,and K.J.Vahala,“Towards visible soliton microcomb generation,”Nat.Commun.8,1295(2017).
    23.J.Ma,X.Jiang,and M.Xiao,“Kerr frequency combs in large-size,ultra-high-Q toroid microcavities with low repetition rates,”Photon.Res.5,B54-B58(2017).
    24.G.P.Agrawal,Nonlinear Fiber Optics,5th ed.(Academic,2013).
    25.B.Li,W.Clements,X.Yu,K.Shi,Q.Gong,and Y.Xiao,“Single nanoparticle detection using split-mode microcavity Raman lasers,”Proc.Natl.Acad.Sci.USA 111,14657-14662(2014).
    26.B.Peng,?.?zdemir,S.Rotter,H.Yilmaz,M.Liertzer,F.Monifi,C.Bender,F.Nori,and L.Yang,“Loss-induced suppression and revival of lasing,”Science 346,328-332(2014).
    27.S.Soltani,V.M.Diep,R.Zeto,and A.M.Armani,“Stimulated antiStokes Raman emission generated by gold nanorod coated optical resonators,”ACS Photon.5,3550-3556(2018).
    28.J.Li,H.Lee,and K.J.Vahala,“Microwave synthesizer using an on-chip Brillouin oscillator,”Nat.Commun.4,2097(2013).
    29.J.Li,H.Lee,and K.J.Vahala,“Low-noise Brillouin laser on a chip at1064 nm,”Opt.Lett.39,287-290(2014).
    30.J.Kim,M.Kuzyk,K.Han,H.Wang,and G.Bahl,“Non-reciprocal Brillouin scattering induced transparency,”Nat.Phys.11,275-280(2015).
    31.C.Dong,Z.Shen,C.Zou,Y.Zhang,W.Fu,and G.Guo,“Brillouinscattering-induced transparency and non-reciprocal light storage,”Nat.Commun.6,6193(2015).
    32.J.Li,H.Lee,T.Chen,and K.J.Vahala,“Characterization of a high coherence,Brillouin microcavity laser on silicon,”Opt.Express 20,20170-20180(2012).
    33.K.Kieu and M.Mansuripur,“Fiber laser using a microsphere resonator as a feedback element,”Opt.Lett.32,244-246(2007).
    34.S.Jiang,C.Guo,Z.Luo,D.Tang,C.Xiao,C.Ren,K.Che,H.Xu,and Z.Cai,“Cascaded Brillouin,Raman and four-wave-mixing generation in a 1.06μm microsphere-feedback Yb-fiber laser,”IEEE Photon.J.10,1502008(2018).
    35.C.Guo,K.Che,H.Xu,P.Zhang,D.Tang,C.Ren,Z.Luo,and Z.Cai,“Generation of optical frequency combs in a fiber-ring/microresonator laser system,”Opt.Lett.41,2576-2579(2016).
    36.W.Liang,V.Ilchenko,D.Eliyahu,A.Savchenkov,A.Matsko,D.Seidel,and L.Maleki,“Ultralow noise miniature external cavity semiconductor laser,”Nat.Commun.6,7371(2015).
    37.H.Okamoto,K.Kasuga,I.Hara,and Y.Kubota,“Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,”Opt.Express17,20227-20232(2009).
    38.Y.Fujimoto,J.Nakanishi,T.Yamada,O.Ishii,and M.Yamazaki,“Visible fiber lasers excited by GaN laser diodes,”Prog.Quantum Electron.37,185-214(2013).
    39.Z.Luo,D.Wu,B.Xu,H.Xu,Z.Cai,F.Wang,Z.Sun,and H.Zhang,“Two-dimensional material-based saturable absorbers:towards compact visible-wavelength all-fiber pulsed lasers,”Nanoscale 8,1066-1072(2016).
    40.D.Weiss,V.Sandoghdar,J.Hare,V.Lefèvre-Seguin,J.Raimond,and S.Haroche,“Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,”Opt.Lett.20,1835-1837(1995).
    41.M.L.Gorodetsky,A.D.Pryamikov,and V.S.Ilchenko,“Rayleigh scattering in high-Q microspheres,”J.Opt.Soc.Am.B 17,1051-1057(2000).
    42.T.J.Kippenberg,S.M.Spillane,and K.J.Vahala,“Modal coupling in traveling-wave resonators,”Opt.Lett.27,1669-1671(2002).
    43.C.Guo,K.Che,P.Zhang,J.Wu,Y.Huang,H.Xu,and Z.Cai,“Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,”Opt.Express 23,32261-32266(2015).
    44.S.Spillane,T.J.Kippenberg,O.Painter,and K.J.Vahala,“Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,”Phys.Rev.Lett.91,043902(2003).
    45.A.Yariv,Quantum Electronics,3rd ed.(Wiley,1989).
    46.R.H.Stolen,C.Lee,and R.K.Jain,“Development of the stimulated Raman spectrum in single-mode silica fibers,”J.Opt.Soc.Am.B 1,652-657(1984).
    47.E.M.Dianov and A.M.Prokhorov,“Medium-power CW Raman fiber lasers,”IEEE J.Sel.Top.Quantum Electron.6,1022-1028(2000).
    48.B.Sprenger,H.Schwefel,and L.Wang,“Whispering-gallery-moderesonator-stabilized narrow-linewidth fiber loop laser,”Opt.Lett.34,3370-3372(2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700