Bound states of solitons in a harmonic graphene-mode-locked fiber laser
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bound states of solitons in a harmonic graphene-mode-locked fiber laser
  • 作者:BO ; FU ; JIN ; LI ; ZHANG ; CAO ; DANIEL ; POPA
  • 英文作者:BO FU;JIN LI;ZHANG CAO;DANIEL POPA;Beijing Advanced Innovation Center for Big Data-Based Precision Medicine,Interdisciplinary Innovation Institute of Medicine and Engineering,Beihang University;School of Instrumentation and Optoelectronic Engineering,Beihang University;Department of Engineering,University of Cambridge;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Beijing Advanced Innovation Center for Big Data-Based Precision Medicine,Interdisciplinary Innovation Institute of Medicine and Engineering,Beihang University;School of Instrumentation and Optoelectronic Engineering,Beihang University;Department of Engineering,University of Cambridge;
  • 出版日期:2019-02-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(61575106);; Beihang University(BUAA);; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine(Ultrafast Pulsed Fiber Lasers and Applications);; School of Instrumentation and Optoelectronic Engineering
  • 语种:英文;
  • 页:GZXJ201902003
  • 页数:5
  • CN:02
  • ISSN:31-2126/O4
  • 分类号:19-23
摘要
We report bound states of solitons from a harmonic mode-locked fiber laser based on a solution-processed graphene saturable absorber. Stable soliton pairs, 26.2 ps apart, are generated with 720 fs duration. By simply increasing the pump power, the laser can also generate harmonic mode-locking with harmonics up to the26 th order(409.6 MHz repetition rate). This is a simple, low-cost, all-fiber, versatile multifunction ultrafast laser that could be used for many applications.
        We report bound states of solitons from a harmonic mode-locked fiber laser based on a solution-processed graphene saturable absorber. Stable soliton pairs, 26.2 ps apart, are generated with 720 fs duration. By simply increasing the pump power, the laser can also generate harmonic mode-locking with harmonics up to the26 th order(409.6 MHz repetition rate). This is a simple, low-cost, all-fiber, versatile multifunction ultrafast laser that could be used for many applications.
引文
1.M.E.Fermann and I.Hartl,“Ultrafast fibre lasers,”Nat.Photonics 7,868-874(2013).
    2.I.N.Duling,“Subpicosecond all-fibre erbium laser,”Electron.Lett.27,544-545(1991).
    3.J.Bewersdorf and S.W.Hell,“Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,”J.Microsc.191,28-38(1998).
    4.S.A.Diddams,L.Hollberg,and V.Mbele,“Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,”Nature 445,627-630(2007).
    5.H.A.Haus and W.S.Wong,“Solitons in optical communications,”Rev.Mod.Phys.68,423-444(1996).
    6.G.P.Agrawal,Applications of Nonlinear Fiber Optics,2nd ed.(Elsevier Academic,2008),pp.1-508.
    7.A.B.Grudinin,D.J.Richardson,and D.N.Payne,“Passive harmonic modelocking of a fibre soliton ring laser,”Electron.Lett.29,1860-1861(1993).
    8.L.Nelson,D.Jones,K.Tamura,H.Haus,and E.Ippen,“Ultrashortpulse fiber ring lasers,”Appl.Phys.B 65,277-294(1997).
    9.B.A.Malomed,“Bound solitons in the nonlinear Schr?dingerGinzburg-Landau equation,”Phys.Rev.A 44,6954-6957(1991).
    10.A.Komarov,K.Komarov,and F.Sanchez,“Harmonic passive mode locking of bound-soliton structures in fiber lasers,”Opt.Commun.354,158-162(2015).
    11.D.Y.Tang,W.S.Man,H.Y.Tam,and P.D.Drummond,“Observation of bound states of solitons in a passively mode-locked fiber laser,”Phys.Rev.A 64,033814(2001).
    12.P.Grelu,F.Belhache,F.Gutty,and J.M.Soto-Crespo,“Phase-locked soliton pairs in a stretched-pulse fiber laser,”Opt.Lett.27,966-968(2002).
    13.G.Herink,F.Kurtz,B.Jalali,D.R.Solli,and C.Ropers,“Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,”Science 356,50-54(2017).
    14.H.Qin,X.Xiao,P.Wang,and C.Yang,“Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,”Opt.Lett.43,1982-1985(2018).
    15.P.Wang,C.Bao,B.Fu,X.Xiao,P.Grelu,and C.Yang,“Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,”Opt.Lett.41,2254-2257(2016).
    16.N.H.Seong and D.Y.Kim,“Experimental observation of stable bound solitons in a figure-eight fiber laser,”Opt.Lett.27,1321-1323(2002).
    17.B.Orta?,A.Zaviyalov,C.K.Nielsen,O.Egorov,R.Iliew,J.Limpert,F.Lederer,and A.Tünnermann,“Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,”Opt.Lett.35,1578-1580(2010).
    18.X.Liu,X.Yao,and Y.Cui,“Real-time observation of the buildup of soliton molecules,”Phys.Rev.Lett.121,023905(2018).
    19.L.Gui,X.Li,X.Xiao,H.Zhu,and C.Yang,“Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,”IEEE Photon.Technol.Lett.25,1184-1187(2013).
    20.P.Wang,K.Zhao,L.Gui,X.Xiao,and C.Yang,“Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2saturable absorber,”IEEE Photon.Technol.Lett.30,1210-1213(2018).
    21.X.Li,K.Xia,D.Wu,Q.Nie,and S.Dai,“Bound states of solitons in a fiber laser with a microfiber-based WS2saturable absorber,”IEEEPhoton.Technol.Lett.29,2071-2074(2017).
    22.Y.Wang,D.Mao,X.Gan,L.Han,C.Ma,T.Xi,Y.Zhang,W.Shang,S.Hua,and J.Zhao,“Harmonic mode locking of bound-state solitons fiber laser based on MoS2saturable absorber,”Opt.Express 23,205-210(2015).
    23.A.Martinez and Z.Sun,“Nanotube and graphene saturable absorbers for fibre lasers,”Nat.Photonics 7,842-845(2013).
    24.Z.Zhang,D.Popa,V.J.Wittwer,S.Milana,T.Hasan,Z.Jiang,A.C.Ferrari,and F.O.Ilday,“All-fiber nonlinearity-and dispersionmanaged dissipative soliton nanotube mode-locked laser,”Appl.Phys.Lett.107,241107(2015).
    25.R.I.Woodward,E.J.R.Kelleher,D.Popa,T.Hasan,F.Bonaccorso,A.C.Ferrari,S.V.Popov,and J.R.Taylor,“Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,”IEEE Photon.Technol.Lett.26,1672-1675(2014).
    26.R.Mary,G.Brown,S.J.Beecher,R.R.Thomson,D.Popa,Z.Sun,F.Torrisi,T.Hasan,S.Milana,F.Bonaccorso,A.C.Ferrari,and A.K.Kar,“Evanescent-wave coupled right angled buried waveguide:applications in carbon nanotube mode-locking,”Appl.Phys.Lett.103,221117(2013).
    27.K.Kieu and F.W.Wise,“All-fiber normal-dispersion femtosecond laser,”Opt.Express 16,11453-11458(2008).
    28.C.S.Jun,S.Y.Choi,F.Rotermund,B.Y.Kim,and D.-I.Yeom,“Toward higher-order passive harmonic mode-locking of a soliton fiber laser,”Opt.Lett.37,1862-1864(2012).
    29.L.Gui,X.Xiao,and C.Yang,“Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,”J.Opt.Soc.Am.B 30,158-164(2013).
    30.R.Going,D.Popa,F.Torrisi,Z.Sun,T.Hasan,F.Wang,and A.C.Ferrari,“500 fs wideband tunable fiber laser mode-locked by nanotubes,”Phys.E 44,1078-1081(2012).
    31.Z.Sun,T.Hasan,F.Torrisi,D.Popa,G.Privitera,F.Wang,F.Bonaccorso,D.M.Basko,and A.C.Ferrari,“Graphene mode-locked ultrafast laser,”ACS Nano 4,803-810(2010).
    32.D.G.Purdie,D.Popa,V.J.Wittwer,Z.Jiang,G.Bonacchini,F.Torrisi,S.Milana,E.Lidorikis,and A.C.Ferrari,“Few-cycle pulses from a graphene mode-locked all-fiber laser,”Appl.Phys.Lett.106,253101(2015).
    33.D.Popa,Z.Sun,F.Torrisi,T.Hasan,F.Wang,and A.C.Ferrari,“Sub200 fs pulse generation from a graphene mode-locked fiber laser,”Appl.Phys.Lett.97,203106(2010).
    34.G.Sobon,J.Sotor,and K.M.Abramski,“Passive harmonic modelocking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,”Appl.Phys.Lett.100,161109(2012).
    35.B.Fu,Y.Hua,X.Xiao,H.Zhu,Z.Sun,and C.Yang,“Broadband graphene saturable absorber for pulsed fiber lasers at 1,1.5,and2-μm,”IEEE J.Sel.Top.Quantum Electron.20,411-415(2014).
    36.I.H.Baek,H.W.Lee,S.Bae,B.H.Hong,Y.H.Ahn,D.-I.Yeom,and F.Rotermund,“Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,”Appl.Phys.Express 5,032701(2012).
    37.M.N.Cizmeciyan,J.W.Kim,S.Bae,B.H.Hong,F.Rotermund,and A.Sennaroglu,“Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,”Opt.Lett.38,341-343(2013).
    38.G.Zhu,X.Zhu,F.Wang,S.Xu,Y.Li,X.Guo,K.Balakrishnan,R.A.Norwood,and N.Peyghambarian,“Graphene mode-locked fiber laser at 2.8μm,”IEEE Photon.Technol.Lett.28,7-10(2016).
    39.C.A.Zaugg,Z.Sun,V.J.Wittwer,D.Popa,S.Milana,T.S.Kulmala,R.S.Sundaram,M.Mangold,O.D.Sieber,M.Golling,Y.Lee,J.H.Ahn,A.C.Ferrari,and U.Keller,“Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser,mode-locked by a graphene-integrated distributed Bragg reflector,”Opt.Express 21,31548-31559(2013).
    40.F.Bonaccorso,A.Lombardo,T.Hasan,Z.Sun,L.Colombo,and A.C.Ferrari,“Production and processing of graphene and 2d crystals,”Mater.Today 15,564-589(2012).
    41.Z.Luo,M.Zhou,J.Weng,G.Huang,H.Xu,C.Ye,and Z.Cai,“Graphene-based passively Q-switched dual-wavelength erbiumdoped fiber laser,”Opt.Lett.35,3709-3711(2010).
    42.A.Martinez,K.Fuse,B.Xu,and S.Yamashita,“Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,”Opt.Express 18,23054-23061(2010).
    43.D.Popa,Z.Jiang,G.E.Bonacchini,Z.Zhao,L.Lombardi,F.Torrisi,A.K.Ott,E.Lidorikis,and A.C.Ferrari,“A stable,power scaling,graphene-mode-locked all-fiber oscillator,”Appl.Phys.Lett.110,243102(2017).
    44.F.Torrisi,D.Popa,S.Milana,Z.Jiang,T.Hasan,E.Lidorikis,and A.C.Ferrari,“Stable,surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,”Adv.Opt.Mater.4,1088-1097(2016).
    45.D.Popa,D.Viola,G.Soavi,B.Fu,L.Lombardi,S.Hodge,D.Polli,T.Scopigno,G.Cerullo,and A.C.Ferrari,“Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,”in Conference on Lasers and Electro-Optics(Optical Society of America,2017),paper JTu5A.2.
    46.L.Gui and C.Yang,“Soliton molecules with±π/2,0,andπphase differences in a graphene-based mode-locked erbium-doped fiber laser,”IEEE Photon.J.10,1502609(2018).
    47.T.Wu,K.Chen,H.Zhao,W.Zhang,Y.Li,and H.Wei,“Flexible dual-soliton manipulation for coherent anti-Stokes Raman scattering spectroscopy,”Opt.Express 26,22001-22010(2018).
    48.W.S.Hummers and R.E.Offeman,“Preparation of graphitic oxide,”J.Am.Chem.Soc.80,1339(1958).
    49.V.G.Kravets,A.N.Grigorenko,R.R.Nair,P.Blake,S.Anissimova,K.S.Novoselov,and A.K.Geim,“Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,”Phys.Rev.B 81,155413(2010).
    50.K.Kashiwagi,S.Yamashita,and S.Y.Set,“In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,”Opt.Express 17,5711-5715(2009).
    51.J.W.Nicholson,R.S.Windeler,and D.J.DiGiovanni,“Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,”Opt.Express 15,9176-9183(2007).
    52.A.C.Ferrari,J.C.Meyer,V.Scardaci,C.Casiraghi,M.Lazzeri,F.Mauri,S.Piscanec,D.Jiang,K.S.Novoselov,S.Roth,and A.K.Geim,“Raman spectrum of graphene and graphene layers,”Phys.Rev.Lett.97,187401(2006).
    53.H.A.Haus,“Theory of mode locking with a fast saturable absorber,”J.Appl.Phys.46,3049-3058(1975).
    54.A.Cabasse,G.Martel,and J.Oudar,“High power dissipative soliton in an erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,”Opt.Express 17,9537-9542(2009).
    55.W.Koechner,Solid-State Laser Engineering,6th ed.,Springer Series in Optical Sciences(Springer,2006).
    56.S.M.J.Kelly,“Characteristic sideband instability of periodically amplified average soliton,”Electron.Lett.28,806-807(1992).
    57.D.von der Linde,“Characterization of the noise in continuously operating mode-locked lasers,”Appl.Phys.B 39,201-217(1986).
    58.R.Iegorov,T.Teamir,G.Makey,and F.O.Ilday,“Direct control of mode-locking states of a fiber laser,”Optica 3,1312-1315(2016).
    59.A.B.Grudinin and S.Gray,“Passive harmonic mode locking in soliton fiber lasers,”J.Opt.Soc.Am.B 14,144-154(1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700