Simulation study of the void space gas effect on slope instability triggered by an earthquake
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation study of the void space gas effect on slope instability triggered by an earthquake
  • 作者:ZHOU ; Zhou ; WANG ; Xiao-qun ; WEI ; Yu-feng ; SHEN ; Jun-hui ; SHEN ; Man
  • 英文作者:ZHOU Zhou;WANG Xiao-qun;WEI Yu-feng;SHEN Jun-hui;SHEN Man;College of Environment Geology and Civil Engineering, Chengdu University of Technology;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology;
  • 英文关键词:Earthquake landslide;;Slope weak intercalated layer;;Void space gas effect;;Void-gas dynamic response;;Excess void space gas pressure;;Gas-rock interaction mechanism
  • 中文刊名:SDKB
  • 英文刊名:Journal of Mountain Science 山地科学学报(英文版)
  • 机构:College of Environment Geology and Civil Engineering, Chengdu University of Technology;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology;
  • 出版日期:2019-06-13
  • 出版单位:Journal of Mountain Science
  • 年:2019
  • 期:v.16
  • 基金:funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015);; the Natural Science Foundation of China (No. 41572308)
  • 语种:英文;
  • 页:SDKB201906007
  • 页数:26
  • CN:06
  • ISSN:51-1668/P
  • 分类号:102-127
摘要
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.
        This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.
引文
Brian C,Amir MK,Farrokh N(2016)Some important considerations in analysis of earthquake-induced landslides.Geoenvironmental Disasters 3:127-147.https://doi.org/10.1186/s40677-016-0045-x
    Cho SH,Kaneko K(2004)Influence of the applied pressure waveform on thedynamicfractureprocesses in rock.International Journal of Rock Mechanics and Mining Sciences41:771-784.https://doi.org/10.1016/j.ijrmms.2004.02.006
    Cho SH,Nakamura YMB,Yang HS,et al.(2008)Numerical study offractureplane control in laboratory-scale blasting.Engineering Fracture Mechanics 75:3966-3984.https://doi.org/10.1016/j.engfracmech.2008.02.007
    Cui SH(2017)Seismic responses of wake interlayer and initiation mechanisms of large landslide during strong earthquake.Chengdu University of Technology,Chengdu Sichuan,China.(In Chinese)
    Cui SH,Pei XJ,Huang RQ(2018)Effects of geological and tectonic characteristics on the earthquaketriggeredDaguangbaolandslide,China.Landslides 15:649-667.https://doi.org/10.1007/s10346-017-0899-3
    Daehnke A,Rossmanith HP,Kouzniak N(1996)Dynamicfracturepropagationdue toblast-induced high pressure gas loading.Rock Mechanics Tools and Techniques1-2:619-626.
    Daehnke A,Rossmanith HP,Napier JAL(1997)Gas pressurisation ofblast-inducedconical cracks.International Journal of Rock Mechanics and Mining Sciences 34:263.https://doi.org/10.1016/S1365-1609(97)00282-7
    Fan H,Zheng H,Li CG,et al.(2017)A decomposition technique of generalized degrees of freedom for mixedmode crack problems.International Journal for Numerical Methods in Engineering 112:803-831.https://doi.org/10.1002/nme.5533
    Feng Y(2016)Research on Weakening Technology of Hard Dirt Band Presplitting Blasting Based on LS-DYNA.Chinese Journal of Underground Space and Engineering.
    Feng Z,Xiong YL,Zhang S,et al.(2014)Thermo-hydromechanical-air coupling finite element method and its application to multi-phase problems.Journal of Rock Mechanics and Geotechnical Engineering 6:77-98.https://doi.org/10.1016/j.jrmge.2014.01.010
    Han WJ,Liu SY,Zhang DW(2011)Experimental study of pneumatic fracturing effect in soil under overburden load.Rock and Soil Mechanics 32:1951-1957.(In Chinese)https://doi.org/10.16285/j.rsm.2011.07.006
    Hu W,Huang RQ,Mcsaveney M,et al.(2019)Super heated steam,hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:Field and experimental evidence.Earth and Planetary Science Letters510:85-93.https://doi.org/10.1016/j.epsl.2019.01.005
    Huang RQ,Xu J,Jia CG,et al.(2005)Two-Dimensional and Three-Degree-of-Freedom Spring Shaking Table for Seismic Simulation.Chinese Patent No.ZL200410081339.5.(In Chinese)
    Jeong W,Seong J(2014)Comparison of effects on technical variances of computational fluid dynamics(CFD)software based on finite element and finite volume methods.International Journal of Mechanical Sciences 78:19-26.https://doi.org/10.1016/j.ijmecsci.2013.10.017
    Kent PE(1974)The Transport Mechanism in Catastrophic Rock Falls.The Journal of Geology 74:79-83.https://doi.org/10.1086/627142
    Kolkov OS,Tikhomirov AM,Shatsukevich AF(1967)Development of explosion cavities in sandy soils.Combustion,Explosion and Shock Waves 4:349-351.https://doi.org/10.1007/BF00741685
    Liu EL,He SM(2012)Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions.Engineering Geology 125:81-91.https://doi.org/10.1016/j.enggeo.2011.11.007
    Liu MG,Yan YF,Xie W,et al.(2017)Experimental study on near-wall-pressure in gas well tubing based on self-similar theory.Journal of China University of Petroleum 41:147-156.(In Chinese)https://doi.org/0.3969/j.issn.1673-5005.2017.02.018
    Li SG(2010)Study of the formation mechanism and dynamic characteristics of Daguangbao massive landslide induced by5.12 Wenchuan earthquake.Chengdu University of Technology,Chengdu Sichuan,China.(In Chinese)
    Liu SY,Zhang DW,Du GY,et al.(2016)A New Combined Vacuum Preloading with Pneumatic Fracturing Method for Soft Ground Improvement.Advances in Transportation Geotechnics III 143:454-461.https://doi.org/10.1016/j.proeng.2016.06.057
    M?hring HC,Kayapinar H,Denkena B(2012)Multi-Scale Positioning Control Model of a Novel Fluid Dynamic Drive by Coupling Process and Adapted CFD Models.Procedia CIRP2:92-97.https://doi.org/10.1016/j.procir.2012.05.047
    Paine AS,Please CP(1993)Asymptotic analysis of a star crack with a central hole.International Journal of Engineering Science 31:893-898.https://doi.org/10.1016/0020-7225(93)90101-Y
    Paley M,Hose R,Marzouqa I,et al.(2000)Stable periodic vortex shedding studied using computational fluid dynamics,laser sheet flow visualization,and MRimaging.Magnetic Resonance Imaging 18:473-478.https://doi.org/10.1016/S0730-725X(99)00136-8
    Radaj D,Zhang S(1993)On the relations between notch stress and crack stress intensity in plane shear and mixed mode loading.Engineering Fracture Mechanics 44:691-704.
    Ronald LS(1968)Leakage and fluidization in air-layer lubricated avalanches.Geological Society of America Bulletin79:653-657.https://doi.org/10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2
    SHMEIE Co.,Ltd.(2015)Shanghai Hundred Million Euro Instrument Equipment Co.,Ltd.http://www.chinajnhb.com/product/show-1214393.html(accessed on 2015-10-09)
    Song XL,Zhang JC,Guo XB,et al.(2009)Influence of blasting on the properties of weak intercalation of a layered rock slope.International Journal of Minerals,Metallurgy and Materials16:7-11.https://doi.org/10.1016/S1674-4799(09)60002-9
    Tan TK,Kang WF(1980)Locked in stresses,creep and dilatancy of rocks,and constitutive equations.Rock Mechanics and Rock Engineering 13:5-22.https://doi.org/10.1007/BF01257895
    Tang HM,Liu X,Hu XL,et al.(2015)Evaluation of landslide mechanisms characterized by high-speed mass ejection and long-run-out based on events following the Wenchuan earthquake.Engineering Geology 194:12-24.https://doi.org/10.1016/j.enggeo.2015.01.004
    Tuncer O,Shanker B,KempelLC(2012)Tetrahedral-Based Vector Generalized Finite Element Method and Its Applications.IEEE Antennas and Wireless Propagation Letters 11:945-948.https://doi.org/10.1109/LAWP.2012.2213291
    Wang GH,Huang RQ,Lourenco SDN,et al.(2014)A large landslide triggered by the 2008 Wenchuan(M8.0)earthquake in Donghekou area:Phenomena and mechanisms.Engineering Geology 182:148-157.https://doi.org/10.1016/j.enggeo.2014.07.013
    Wang SJ(2009)Geological nature of rock and its deduction for rock mechanics.Chinese Journal of Rock Mechanics and Engineering 28:433-450.(In Chinese)
    Wang XQ,Chen ZL,Zhou Z,et al.(2016)Variation of cavity gas pressure in slopes with weak intercalation under seismic load.Journal of Mountain Science 13:352-360.https://doi.org/10.1007/s11629-014-3148-4
    Xing AG,Ying YP,Qi C,et al.(2012)Study on the Wind Tunnel Testing of Air Cushion Effect of High-Speed and LongRunout Landslide.Journal of Shanghai Jiao Tong University10:1462-1467.(In Chinese)https://doi.org/10.16183/j.cnki.jsjtu.2012.10.020
    Xu XN,Li SW,Wang XQ,et al.(2013)Characteristics of Formation Mechanism and Kinematics of Daguangbao Landslide Caused by Wenchuan Earth-Quake,Sichuan,China.Journal of Engineering Geology 21:269-281.(In Chinese)
    Yan KM,Zhang JJ,Wang ZJ,et al.(2018)Seismic responses of deep buried pipeline under non-uniform excitations from large scale shaking table test.Soil Dynamics and Earthquake Engineering 113:180-192.https://doi.org/10.1016/j.soildyn.2018.05.036
    Yue ZQ(2014)Gas inclusions and their expansion power as foundation of rock"Locked in"stress hypothesis.Journal of Engineering Geology 22:739-756.(In Chinese)https://doi.org/10.13544/j.cnki.jeg.2014.04.022
    Zhao K,Wang XJ,Xiao WG,et al.(2009)Numerical simulation on underground cavity-decoupling explosion.Explosion&Shock Waves.
    Zhou Z,Wang XQ,Zhou B,et al.(2014)The experimental technology and common problems solving to two to three freedom degree spring-typed earthquake simulation vibration table.Journal of Changchun Institute of Technology(Natural Sciences Edition)15(4):82-88.(In Chinese)https://doi.org/10.3696/j.issn.1009-8984.2014.04.020

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700