Construction of highly-stable graphene hollow nanospheres and their application in supporting Pt as effective catalysts for oxygen reduction reaction
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction of highly-stable graphene hollow nanospheres and their application in supporting Pt as effective catalysts for oxygen reduction reaction
  • 作者:Huaifang ; Zhang ; Jubing ; Zhang ; Kunhao ; Liu ; Yunqi ; Zhu ; Xiaoyu ; Qiu ; Dongmei ; Sun ; Yawen ; Tang
  • 英文作者:Huaifang Zhang;Jubing Zhang;Kunhao Liu;Yunqi Zhu;Xiaoyu Qiu;Dongmei Sun;Yawen Tang;Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University;
  • 英文关键词:Sacrificial template method;;3D r-GO nanospheres;;Highly-stable;;Hollow structure;;Oxygen reduction reaction
  • 中文刊名:GENE
  • 英文刊名:绿色能源与环境(英文)
  • 机构:Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University;
  • 出版日期:2019-07-15
  • 出版单位:Green Energy & Environment
  • 年:2019
  • 期:v.4
  • 基金:supported by the financial supports from National Natural Science Foundation of China (21503111, 51806110, 21875112 and 21576139);; Natural Science Foundation of Jiangsu Higher Education Institutions of China (16KJB150020);; Natural Science Foundation of Jiangsu Province (BK20171473);; National and Local Joint Engineering Research Center of Biomedical Functional Materials and Priority Academic Program Development of Jiangsu Higher Education Institutions
  • 语种:英文;
  • 页:GENE201903004
  • 页数:9
  • CN:03
  • ISSN:10-1418/TK
  • 分类号:46-54
摘要
The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herein, on the basis of well-defined morphology and efficient electron conduction, the 3D highly-stable graphene hollow nanospheres have been synthesized by using sacrificial template method. The asprepared 3D graphene nanospheres exhibit superior mechanical stability, electrochemical stability, and strong hydrophobicity, which may accelerate the emission of H_2O in acidic medium-based ORR. Accordingly, the 3D highly-stable graphene nanospheres are used to confine tiny Pt nanoparticles(3Dr-GO@Pt HNSs) for ORR in acidic medium, exhibiting superior activity with 4-electron-transfered pathway. Meanwhile,dramatically improved durability are achieved in terms of both ORR mass activity and electrochemically surface area compared to those of commercial Pt/C.
        The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herein, on the basis of well-defined morphology and efficient electron conduction, the 3D highly-stable graphene hollow nanospheres have been synthesized by using sacrificial template method. The asprepared 3D graphene nanospheres exhibit superior mechanical stability, electrochemical stability, and strong hydrophobicity, which may accelerate the emission of H_2O in acidic medium-based ORR. Accordingly, the 3D highly-stable graphene nanospheres are used to confine tiny Pt nanoparticles(3Dr-GO@Pt HNSs) for ORR in acidic medium, exhibiting superior activity with 4-electron-transfered pathway. Meanwhile,dramatically improved durability are achieved in terms of both ORR mass activity and electrochemically surface area compared to those of commercial Pt/C.
引文
[1]M.S.Ahmed,Y.B.Kim,Sci.Rep.7(2017)43279.
    [2]Y.Han,Y.G.Wang,W.Chen,R.Xu,L.Zheng,J.Zhang,J.Luo,R.A.Shen,Y.Zhu,W.C.Cheong,C.Chen,Q.Peng,D.Wang,Y.Li,J.Am.Chem.Soc.139(2017)17269-17272.
    [3]Z.Yan,L.Gao,C.Dai,M.Zhang,X.Lv,P.K.Shen,Int.J.Hydrogen Energy 43(2018)3705-3715.
    [4]T.Oh,M.Kim,D.Park,J.Kim,Appl.Surf.Sci.440(2018)627-636.
    [5]Q.Xue,J.Bai,C.Han,P.Chen,J.X.Jiang,Y.Chen,ACS Catal.8(2018)11287-11295.
    [6]Z.Li,Z.Liu,B.Li,Z.Liu,D.Li,H.Wang,Q.Li,Electrochim.Acta 221(2016)31-40.
    [7]G.L.Chai,M.Boero,Z.Hou,K.Terakura,W.Cheng,ACS Catal.7(2017)7908-7916.
    [8]J.Wang,Z.Huang,W.Liu,C.Chang,H.Tang,Z.Li,W.Chen,C.Jia,T.Yao,S.Wei,Y.Wu,Y.Li,J.Am.Chem.Soc.139(2017)17281-17284.
    [9]C.Zhang,J.Sha,H.Fei,M.Liu,S.Yazdi,J.Zhang,Q.Zhong,X.Zou,N.Zhao,H.Yu,Z.Jiang,E.Ringe,B.I.Yakobson,J.Dong,D.Chen,J.M.Tour,ACS Nano 11(2017)6930-6941.
    [10]Y.L.Liu,X.Y.Xu,P.C.Sun,T.H.Chen,Int.J.Hydrogen Energy 40(2015)4531-4539.
    [11]K.Jukk,N.Kongi,P.Rauwel,L.Matisen,K.Tammeveski,Electrocatalysis 7(2016)428-440.
    [12]Q.Shi,C.Zhu,M.H.Engelhard,D.Du,Y.Lin,RSC Adv.7(2017)6303-6308.
    [13]J.Ying,J.Li,G.Jiang,Z.P.Cano,Z.Ma,C.Zhong,D.Su,Z.Chen,Appl.Catal.B Environ.225(2018)496-503.
    [14]Y.Li,Y.Li,E.Zhu,T.McLouth,C.Y.Chiu,X.Huang,Y.Huang,J.Am.Chem.Soc.134(2012)12326-12329.
    [15]S.Yasmin,S.Cho,S.Jeon,Appl.Surf.Sci.434(2018)905-912.
    [16]S.Fu,C.Zhu,J.Song,M.H.Engelhard,H.Xia,D.Du,Y.Lin,ACSAppl.Mater.Interfaces 8(2016)35213-35218.
    [17]G.R.Xu,B.Wang,J.Y.Zhu,F.Y.Liu,Y.Chen,J.H.Zeng,J.X.Jiang,Z.H.Liu,Y.W.Tang,J.M.Lee,ACS Catal.6(2016)5260-5267.
    [18]Q.Xue,G.Xu,R.Mao,H.Liu,J.Zeng,J.Jiang,Y.Chen,J.Energy Chem.26(2017)1153-1159.
    [19]H.M.Liu,S.H.Han,Y.Y.Zhu,P.Chen,Y.Chen,Green Eneryg Environ.3(2018)375-383.
    [20]J.N.Tiwari,K.Nath,S.Kumar,R.N.Tiwari,K.C.Kemp,N.H.Le,D.H.Youn,J.S.Lee,K.S.Kim,Nat.Commun.4(2013)2221.
    [21]M.Li,Q.Jiang,M.Yan,Y.Wei,J.Zong,J.Zhang,Y.Wu,H.Huang,ACS Sustain.Chem.Eng.6(2018)6644-6653.
    [22]J.Sanetuntikul,T.Hang,S.Shanmugam,Chem.Commun.50(2014)9473-9476.
    [23]X.Zhong,L.Liu,Y.Jiang,X.Wang,L.Wang,G.Zhuang,X.Li,D.Mei,J.G.Wang,D.S.Su,ChemCatChem 7(2015)1826-1832.
    [24]K.Qiu,G.Chai,C.Jiang,M.Ling,J.Tang,Z.Guo,ACS Catal.6(2016)3558-3568.
    [25]F.Xu,R.Chen,Z.Lin,Y.Qin,Y.Yuan,Y.Li,X.Zhao,M.Yang,X.Sun,S.Wang,Q.Peng,Y.Li,X.He,ACS Omega 3(2018)3599-3607.
    [26]W.Ahn,D.U.Lee,G.Li,K.Feng,X.Wang,A.Yu,G.Lui,Z.Chen,ACS Appl.Mater.Interfaces 8(2016)25297-25305.
    [27]X.Qiu,T.Li,S.Deng,K.Cen,L.Xu,Y.Tang,Chem.Eur J.24(2018)1246-1252.
    [28]X.Qiu,X.Yan,K.Cen,D.Sun,L.Xu,Y.Tang,ACS Appl.Energy Mater.1(2018)2341-2349.
    [29]L.Zhao,X.L.Sui,J.L.Li,J.J.Zhang,L.M.Zhang,Z.B.Wang,ACSAppl.Mater.Interfaces 8(2016)16026-16034.
    [30]G.Zhou,Y.Zhao,A.Manthiram,Adv.Energy Mater.5(2015)1402263.
    [31]X.Qiu,H.Zhang,Y.Dai,F.Zhang,P.Wu,P.Wu,Y.Tang,Catalysts 5(2015)992-1002.
    [32]W.Huang,S.Ding,Y.Chen,W.Hao,X.Lai,J.Peng,J.Tu,Y.Cao,X.Li,Sci.Rep.7(2017)5220.
    [33]Y.Wu,Q.Shi,Y.Li,Z.Lai,H.Yu,H.Wang,F.Peng,J.Mater.Chem.A3(2015)1142-1151.
    [34]D.Novitski,S.Holdcroft,ACS Appl.Mater.Interfaces 7(2015)27314-27323.
    [35]V.Chabot,D.Higgins,A.Yu,X.Xiao,Z.Chen,J.Zhang,Energy Environ.Sci.7(2014)1564-1596.
    [36]C.K.Chua,M.Pumera,Chem.Soc.Rev.43(2014)291-312.
    [37]J.S.Lee,J.C.Yoon,J.H.Jang,J.Mater.Chem.A 1(2013)7312-7315.
    [38]Z.Tang,Z.Zhang,Z.Han,S.Shen,J.Li,J.Yang,J.Mater.Sci.51(2016)8791-8798.
    [39]W.St€ober,A.Fink,E.Bohn,J.Colloid Interface Sci.26(1968)62-69.
    [40]X.Qiu,Y.Dai,X.Zhu,H.Zhang,P.Wu,Y.Tang,S.Wei,J.Power Sources 302(2016)195-201.
    [41]X.Qiu,P.Wu,L.Xu,Y.Tang,J.M.Lee,Adv.Mater.Interfaces 2(2015)1500321.
    [42]Y.Chen,G.Fu,Y.Li,Q.Gu,L.Xu,D.Sun,Y.Tang,J.Mater.Chem.A 5(2017)3774-3779.
    [43]B.Fang,B.A.Pinaud,D.P.Wilkinson,Electrocatalysis 7(2016)336-344.
    [44]Z.Zhang,T.Sun,C.Chen,F.Xiao,Z.Gong,S.Wang,ACS Appl.Mater.Interfaces 6(2014)21035-21040.
    [45]M.S.Dresselhaus,A.Jorio,M.Hofmann,G.Dresselhaus,R.Saito,Nano Lett.10(2010)751-758.
    [46]B.Liu,L.Huo,G.Zhang,J.Zhang,Electrochim.Acta 213(2016)771-782.
    [47]Q.Yu,J.Xu,C.Wu,J.Zhang,L.Guan,ACS Appl.Mater.Interfaces 8(2016)35264-35269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700