Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique
  • 作者:Dechun ; Ren ; Shujun ; Li ; Hao ; Wang ; Wentao ; Hou ; Yulin ; Hao ; Wei ; Jin ; Rui ; Yang ; R.Devesh ; K.Misra ; Lawrence ; E.Murr
  • 英文作者:Dechun Ren;Shujun Li;Hao Wang;Wentao Hou;Yulin Hao;Wei Jin;Rui Yang;R.Devesh K.Misra;Lawrence E.Murr;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences;School of Materials Science and Engineering,University of Science and Technology of China;Department of Metallurgical and Materials Engineering,The University of Texas at EI Paso;
  • 英文关键词:Ti-6Al-4V cellular structures;;Additive manufacturing;;Fatigue behavior
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;School of Materials Science and Engineering, University of Science and Technology of China;Department of Metallurgical and Materials Engineering, The University of Texas at EI Paso;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:support by the National Key Research and Development Program of China (2017YFC1104901, 2016YFC1102601);; the National Natural Science Foundation of China (51631007);; the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-JSC031-02)
  • 语种:英文;
  • 页:CLKJ201902005
  • 页数:10
  • CN:02
  • ISSN:21-1315/TG
  • 分类号:59-68
摘要
Porous titanium and its alloys have been considered as promising replacement for dense implants, as they possess low elastic modulus comparable to that of compact human bones and are capable of providing space for in-growth of bony tissues to achieve a better fixation. Recently, the additive manufacturing(AM) method has been successfully applied to the fabrication of Ti-6 Al-4 V cellular meshes and foams.Comparing to traditional fabrication methods, the AM method offers advantages of accurate control of complex cell shapes and internal pore architectures, thus attracting extensive attention. Considering the long-term safety in the human body, the metallic cellular structures should possess high fatigue strength.In this paper, the recent progress on the fatigue properties of Ti-6 Al-4 V cellular structures fabricated by the AM technique is reviewed. The various design factors including cell shapes, surface properties, post treatments and graded porosity distribution affecting the fatigue properties of additive manufactured Ti-6 Al-4 V cellular structures were introduced and future development trends were also discussed.
        Porous titanium and its alloys have been considered as promising replacement for dense implants, as they possess low elastic modulus comparable to that of compact human bones and are capable of providing space for in-growth of bony tissues to achieve a better fixation. Recently, the additive manufacturing(AM) method has been successfully applied to the fabrication of Ti-6 Al-4 V cellular meshes and foams.Comparing to traditional fabrication methods, the AM method offers advantages of accurate control of complex cell shapes and internal pore architectures, thus attracting extensive attention. Considering the long-term safety in the human body, the metallic cellular structures should possess high fatigue strength.In this paper, the recent progress on the fatigue properties of Ti-6 Al-4 V cellular structures fabricated by the AM technique is reviewed. The various design factors including cell shapes, surface properties, post treatments and graded porosity distribution affecting the fatigue properties of additive manufactured Ti-6 Al-4 V cellular structures were introduced and future development trends were also discussed.
引文
[1] V. Karageorgiou, D. Kaplan, Biomaterials 26(2005)5474–5491.
    [2] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine:Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer Press, GER, 2001.
    [3] L.J. Gibson, MRS Bull. 28(2003)270–274.
    [4] W.C. Head, D.J. Bauk, E.R. Jr, Clin. Orthop. Relat. Res. 311(1995)85–90.
    [5] B.V. Krishna, S. Bose, A. Bandyopadhyay, Acta Biomater. 3(2007)997–1006.
    [6] R. Huiskes, Acta Orthop. Belg. 59(Suppl. 1)(1993)118–129.
    [7] J.D. Bronzino, The Biomedical Engineering Handbook, 2nd ed., CRC Press, USA,2000.
    [8] J.D. Bobyn, G.J. Stackpool, S.A. Hacking, M. Tanzer, J.J. Krygier, J. Bone Joint Surg. Br. 81(1999)907–914.
    [9] R. Bhola, S.M. Bhola, B. Mishra, D.L. Olson, Trend. Biomater. Artif. Organs 25(2011)34–46.
    [10] S.F. Yang, K.F. Leong, Z.H. Du, C.K. Chua, Tissue Eng. 7(2001)679–689.
    [11] M. Niinomi, J. Mech. Behav. Biomed. Mater. 1(2008)30–42.
    [12] K.C. Nune, R.D.K. Misra, S.M. Gaytan, L.E. Murr, J. Biomater. Tiss. Eng. 4(2014)755–771.
    [13] K.C. Nune, R.D.K. Misra, S.M. Gaytan, L.E. Murr, J. Biomed. Mater. Res. A. 103(2015)1677–1692.
    [14] J. Banhart, Prog. Mater. Sci. 46(2001)559–632.
    [15] X.L. Zhao, S.J. Li, M. Zhang, Y.D. Liu, T.B. Sercombe, S.G. Wang, Y.L. Hao, R.Yang, L.E. Murr, Mater. Des. 95(2016)21–31.
    [16] S. Zhao, S.J. Li, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Mater. Technol. 31(2016)98–107.
    [17] L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez,P.W. Shindo, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. Mater. 4(2011)1396–1411.
    [18] L.C. Zhang, H. Attar, Adv. Eng. Mater. 18(2016)463–475.
    [19] A. Kumar, K.C. Nune, L.E. Murr, R.D.K. Misra, Int. Mater. Rev. 61(2016)20–45.
    [20] N. Dai, L.C. Zhang, J. Zhang, Q. Chen, M. Wu, Corros. Sci. 102(2016)484–489.
    [21] Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C.Zhang, Acta Mater. 113(2016)56–67.
    [22] Y.J. Liu, S.J. Li, W.T. Hou, S.C. Wang, Y.L. Hao, R. Yang, T.B. Sercombe, L.C.Zhang, J. Mater. Sci. Technol. 32(2016)505–508.
    [23] K.C. Nune, A. Kumar, R.D. Misra, S.J. Li, Y.L. Hao, R. Yang, Colloid. Surface B 150(2017)78–88.
    [24] K.C. Nune, A. Kumar, L.E. Murr, R.D.K. Misra, J. Biomed. Mater. Res. A 104(2016)517–532.
    [25] S.Z. Zhang, C. Li, W.T. Hou, S. Zhao, S.J. Li, J. Mater. Sci. Technol. 32(2016)1098–1104.
    [26] S.Y. Chen, J.C. Huang, C.T. Pan, C.H. Lin, T.L. Yang, Y.S. Huang, C.H. Ou, L.Y.Chen, D.Y. Lin, H.K. Lin, T.H. Li, J.S.C. Jang, C.C. Yang, J. Alloy. Compd. 713(2017)248–254.
    [27] Y.J. Liu, H.L. Wang, S.J. Li, S.G. Wang, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang,L.C. Zhang, Acta Mater. 126(2017)58–66.
    [28] K.C. Nune, A. Kumar, R.D.K. Misra, S.J. Li, Y.L. Hao, R. Yang, J. Biomater. Appl. 30(2016)1182–1204.
    [29] L.C. Zhang, D. Klemn, J. Eckert, Y.L. Hao, T.B. Sercombe, Scripta Mater 65(2011)21–24.
    [30] H. Attar, M. Bonisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76(2014)13–22.
    [31] N.W. Dai, J.X. Zhang, Y. Chen, L.C. Zhang, J. Electrochem. Soc. 164(2017)C428–C434.
    [32] Y. Bai, X. Gai, S.J. Li, L.C. Zhang, Y.J. Liu, Y.L. Hao, X. Zhang, R. Yang, Y.B. Gao,Corros. Sci. 123(2017)289–296.
    [33] S. Ozbilen, D. Liebert, T. Beck, M. Bram, Mater. Sci. Eng. C 60(2016)446–457.
    [34] K.Y.G. McCullough, N.A. Fleck, M.F. Ashby, Fatigue Fract. Eng. Mater. Struct. 23(2000)199–208.
    [35] S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B.Wicker, Acta Mater. 60(2012)793–802.
    [36] J. Lemaiter, A. Plumtree, J. Eng. Mater. Technol. ASME 101(1979)284–292.
    [37] S.M. Bowman, X.E. Guo, D.W. Cheng, T.M. Keaveny, L.J. Gibson, W.C. Hayes,T.A. McMahon, J. Biomech. Eng. 120(1998)647–654.
    [38] W.E. Caler, D.R. Carter, J. Biomech. 22(1989)625–635.
    [39] S. Zhao, S.J. Li, S.G. Wang, W.T. Hou, Y. Li, L.C. Zhang, Y.L. Hao, R. Yang, R.D.K.Misra, L.E. Murr, Acta Mater. 150(2018)1–15.
    [40] B.V. Van, Y. Apers, K. Lietaert, J.P. Kruth, Acta Biomater. 47(2017)193–202.
    [41] K. Lietaert, A. Cutolo, D. Boey, B.V. Hooreweder, Sci. Rep. 8(2018)4957.
    [42] A.M. Harte, N.A. Fleck, M.F. Ashby, Acta Mater. 47(1999)2511–2524.
    [43] J.S. Huang, J.Y. Lin, Acta Mater. 44(1996)289–296.
    [44] A.M. Makiyama, S. Vajjhala, L.J. Gibson, J. Biomech. Eng. 124(2002)512–520.
    [45] J. Zhou, W.O. Soboyejo, Mater. Sci. Eng. A 369(2004)23–35.
    [46] Y. Sugimura, A. Rabiei, A.G. Evans, A.M. Harte, N.A. Fleck, Mater. Sci. Eng. A269(1999)38–48.
    [47] M. Kolluri, M. Mukherjee, F. Garcia-Moreno, J. Banhart, U. Ramamurty, Acta Mater. 56(2008)1114–1125.
    [48] X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B.Wicker, J. Mech. Behav. Biomed. Mater. 16(2012)153–162.
    [49] S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Acta Biomater.10(2014)4537–4547.
    [50] J.F. Sun, Y.Q. Yang, D. Wang, Mater. Des. 49(2013)545–552.
    [51] J. Parthasarathy, B. Starly, S. Raman, A. Christensen, J. Mech. Behav. Biomed.Mater. 3(2010)249–259.
    [52] T. Niendorf, F. Brenne, M. Schaper, Metall. Mater. Trans. B 45(2014)1181–1185.
    [53] J. Kadkhodapour, H. Montazerian, A.C. Darabi, A.P. Anaraki, S.M. Ahmadi, A.A.Zadpoor, S. Schmauder, J. Mech. Behav. Biomed. Mater. 50(2015)180–191.
    [54] S.M. Ahmadi, G. Campoli, S.A. Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H.Weinans, A.A. Zadpoor, J. Mech. Behav. Biomed. Mater. 34(2014)106–115.
    [55] N.W. Hrabe, P. Heinl, B. Flinn, C. K?rner, R.K. Bordia, J. Biomed. Mater. Res. Par B Appl. Biomater. 99(2011)313–320.
    [56] S.A. Yavari, R. Wauthle, J.V.D. Stok, A.C. Riemslag, M. Janssen, M. Mulier, J.P.Kruth, J. Schrooten, H. Weinans, A.A. Zadpoor, Mater. Sci. Eng. C 33(2013)4849–4858.
    [57] M. Jamshidinia, L. Wang, W. Tong, R. Ajlouni, R. Kovacevic, J. Mater. Process.Tech. 226(2015)255–263.
    [58] R. Hedayati, H. Hosseini-Toudeshky, M. Sadighi, M. Mohammadi-Aghdam,A.A. Zadpoor, Int. J. Fatigue 84(2016)67–79.
    [59] L.J. Gibson, M.F. Ashby, K. Kumar, Cellular Solids:Structure and Properties,2nd ed., Cambridge University Press, UK, 1998.
    [60] K. Li, X.L. Gao, G. Subhash, Int. J. Solides. Struct. 42(2005)1777–1795.
    [61] K. Li, X.L. Gao, G. Subhash, J. Mech. Phys. Solids 54(2006)783–806.
    [62] F. C?té, V.S. Deshpande, N.A. Fleck, A.G. Evans, Int. J. Solids. Struct. 43(2006)6220–6242.
    [63] Y. An, C. Wen, P.D. Hodgson, C.H. Yang, Comp. Mater. Sci. 55(2012)1–9.
    [64] D. Melancon, Z.S. Bagheri, R.B. Johnston, L. Liu, M. Tanzer, D. Pasini, Acta Biomater. 63(2017)350–368.
    [65] L.C. Zhang, Y.J. Liu, S.J. Li, Y.L. Hao, Adv. Eng. Mater. 20(2018)1700842.
    [66] S.A. Yavari, S.M. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A.A Zadpoor, J. Mech. Behav. Biomed. Mater. 43(2015)91–100.
    [67] S. Zhao, S.J. Li, W.T. Hou, Y.L. Hao, R. Yang, R.D.K. Misra, J. Mech. Behav.Biomed. Mater. 59(2016)251–264.
    [68] A. Zargarian, M. Esfahanian, J. Kadkhodapour, S. Ziaei-Rad, Mater. Sci. Eng. C60(2016)339–347.
    [69] S.M. Ahmadi, R. Hedayati, Y. Li, K. Lietaert, N. Tumer, A. Fatemi, C.D. Rans, B.Pouran, H. Weinans, A.A. Zadpoor, Acta Biomater. 65(2018)292–304.
    [70] F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans,A.A. Zadpoor, Acta Biomater. 53(2017)572–584.
    [71] W. Yuan, W.T. Hou, S.J. Li, Y.L. Hao, R. Yang, L.C. Zhang, Y. Zhu, J. Mater. Sci.Technol. 34(2018)1127–1131.
    [72] S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Mater.Technol. 24(2009)180–190.
    [73] D.H. Dai, D.D. Gu, Appl. Surf. Sci. 355(2015)310–319.
    [74] H.J. Gong, K. Rafi, H.F. Gu, G.D.J. Ram, T. Starr, B. Stucker, Mater. Des. 86(2015)545–554.
    [75] M.W. Wu, J.K. Chen, B.H. Lin, P.H. Chiang, Mater. Des. 134(2017)163–170.
    [76] K. Rüdinger, D. Fischer, Titanium:Sci. Technol.(1985)2123–2130.
    [77] M. Dallago, V. Fontanari, E. Torresani, M. Leoni, C. Pederzolli, C. Potrich, M.Benedetti, J. Mech. Behav. Biomed. Mater. 78(2018)381–394.
    [78] S. Suresh, Fatigue of Materials, Cambridge University Press, UK, 1998.
    [79] G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen, S.V. Bael, J. Schrooten, M.Wevers, Adv. Eng. Mater. 14(2012)363–370.
    [80] H. Hasib, O.L.A. Harrysson, H.A. West II, JOM 67(2015)639–646.
    [81] B.V. Hooreweder, K. Lietaert, B. Neirinck, N. Lippiatt, M. Wevers, J. Mech.Behav. Biomed. Mater. 70(2017)60–67.
    [82] S.J. Hollister, Nature Mater. 4(2005)518–524.
    [83] B. Derby, Science 338(2012)921–926.
    [84] S.H. Oh, I.I.K. Park, J.M. Kim, J.H. Lee, Biomaterials 28(2007)1664–1671.
    [85] L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H.Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, J. Brecke, Philos. Trans. Math.Phys. Eng. Sci. 368(2010)1999–2032.
    [86] W.S. Lin, T.L. Starr, B.T. Harris, A. Zandinejad, D. Morton, Int. J. Oral. Max. Impl.28(2013)1490–1495.
    [87] J. Parthasarathy, B. Starly, S. Raman, J. Manuf. Process. 13(2011)160–170.
    [88] S.J. Li, S. Zhao, W.T. Hou, C. Teng, Y.L. Hao, Y. Li, R. Yang, R.D.K. Misra, Adv. Eng.Mater. 18(2016)34–38.
    [89] K.B. Hazlehurst, C.J. Wang, M. Stanford, Mater. Des. 60(2014)177–183.
    [90] A. Bignon, J. Chouteau, J. Chevalier, G. Fantozzi, J.P. Carret, P. Chavassieux, G.Boivin, M. Melin, D. Hartmann, J. Mater. Sci.-Mater. Med. 14(2003)1089–1097.
    [91] M. Afshar, A.P. Anaraki, H. Montazerian, J. Kadkhodapour, J. Mech. Behav.Biomed. Mater. 62(2016)481–494.
    [92] N.A. Fleck, V.S. Deshpande, M.F. Ashby, Proc. R. Soc. A 466(2010)2495–2516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700