High strength and ductility of 34CrNiMo6 steel produced by laser solid forming
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High strength and ductility of 34CrNiMo6 steel produced by laser solid forming
  • 作者:Chunping ; Huang ; Xin ; Lin ; Fencheng ; Liu ; Haiou ; Yang ; Weidong ; Huang
  • 英文作者:Chunping Huang;Xin Lin;Fencheng Liu;Haiou Yang;Weidong Huang;State Key Laboratory of Solidification Processing,Northwestern Polytechnical University;Engineering Research Center in Additive Manufacturing,Nanchang Hangkong University;
  • 英文关键词:Laser solid forming;;High strength and ductility;;Quenching and tempering steel;;Microstructure;;Mechanical property
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:State Key Laboratory of Solidification Processing, Northwestern Polytechnical University;Engineering Research Center in Additive Manufacturing, Nanchang Hangkong University;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by National Natural Science Foundation of China (Grant Nos. 51565041, 51465044 and 51323008);; the National Key Research and Development Program of China (No. 2016YFB1100100);; the fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201634)
  • 语种:英文;
  • 页:CLKJ201902015
  • 页数:11
  • CN:02
  • ISSN:21-1315/TG
  • 分类号:151-161
摘要
Because of the excellent mechanical properties of 34 CrNiMo6 steel, it is widely used in high-value components. Many conventional approaches to strengthening-steels typically involve the loss of useful ductility.In this study, 34 CrNiMo6 Steel having high strength and ductility is produced by laser solid forming(LSF)with a quenching-tempering(QT) treatment. Tempering of bainite is mainly by solid phase transformation in the previous LSF layers during the LSF process. The stable microstructure of LSF consists of ferrite and fine carbides. The microstructure transfers to tempered sorbite after heat-treatment. The tensile properties of the LSF steel meet those of the wrought standard. The UTS and elongation of LSF sample at 858 MPa, 19.2%, respectively, are greater than those of the wrought. The QT treatment enhanced the ultimate tensile strength and yield strength of the LSF sample. The ultimate tensile strength, yield strength, reduction in area, and elongation of the LSF+QT sample at 980 MPa, 916 MPa, 58.9%, and 13.9%,respectively, are greater than those of the wrought standard. The yield strength of the LSF+QT sample is approximately 1.27 times that of the wrought. The LSF samples failed in a ductile fracture mode, while the LSF+QT samples showed mixed-mode failure. The defects have only a small effect on the tensile properties owing to the excellent ductility of the LSF sample.
        Because of the excellent mechanical properties of 34 CrNiMo6 steel, it is widely used in high-value components. Many conventional approaches to strengthening-steels typically involve the loss of useful ductility.In this study, 34 CrNiMo6 Steel having high strength and ductility is produced by laser solid forming(LSF)with a quenching-tempering(QT) treatment. Tempering of bainite is mainly by solid phase transformation in the previous LSF layers during the LSF process. The stable microstructure of LSF consists of ferrite and fine carbides. The microstructure transfers to tempered sorbite after heat-treatment. The tensile properties of the LSF steel meet those of the wrought standard. The UTS and elongation of LSF sample at 858 MPa, 19.2%, respectively, are greater than those of the wrought. The QT treatment enhanced the ultimate tensile strength and yield strength of the LSF sample. The ultimate tensile strength, yield strength, reduction in area, and elongation of the LSF+QT sample at 980 MPa, 916 MPa, 58.9%, and 13.9%,respectively, are greater than those of the wrought standard. The yield strength of the LSF+QT sample is approximately 1.27 times that of the wrought. The LSF samples failed in a ductile fracture mode, while the LSF+QT samples showed mixed-mode failure. The defects have only a small effect on the tensile properties owing to the excellent ductility of the LSF sample.
引文
[1] S. Maropoulos, N. Ridley, S. Karagiannis, Mater. Sci. Eng. A 380(2004)79–92.
    [2] R. Branco, J.D. Costa, F.V. Antunes, Theor. Appl. Fract. Mech. 58(2012)28–34.
    [3] A. Kuduzovi′c, M.C. Poletti, C. Sommitsch, M. Domankova, S. Mitsche, Mater.Sci. Eng. A 590(2014)66–73.
    [4] Y.M. Wang, T. Voisin, J.T. MaKeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang,W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V.Humza, T. Zhu, Nat. Mater. 17(2018)63–70.
    [5] Y.M. Li, H.O. Yang, X. Lin, W.D. Huang, J.G. Li, Y.H. Zhou, Mater. Sci. Eng. A 360(2003)18–25.
    [6] Q.G. Li, X. Lin, F.G. Liu, F.C. Liu, W.D. Huang, Mater. Sci. Eng. A 700(2017)649–655.
    [7] J. Liu, J. Li, X. Cheng, H.M. Wang, J. Mater. Sci. Technol. 34(2017)643–652.
    [8] X. Lin, Y.Q. Cao, X.Y. Wu, J. Chen, W.D. Huang, Mater. Sci. Eng. A 553(2012)80–88.
    [9] J. Yu, M. Rombouts, G. Maes, Mater. Des. 45(2013)228–235.
    [10] R. Casati, J. Lemke, M. Vedani, J. Mater. Sci. Technol. 32(2016)738–744.
    [11] H.Y. Chen, D.D. Gu, D.H. Dai, C.L. Ma, M.J. Xia, Mater. Sci. Eng. A 682(2017)279–289.
    [12] S. Bhattacharya, G.P. Dinda, A.K. Dasgupta, J. Mazumder, Mater. Sci. Eng. A 528(2011)2309–2318.
    [13] G.F. Sun, S. Bhattacharya, G.P. Dinda, A.K. Dasgupta, J. Mazumder, Mater. Sci.Eng. A 528(2011)5141–5145.
    [14] G.F. Sun, R. Zhou, J.Z. Lu, J. Mazumder, Acta Mater. 84(2015)172–189.
    [15] M.E. Abd El-Azim, M.M. Ghoneim, A.M. Nasreldin, S. Soliman, Z. Metallkd. 88(1997)502–507.
    [16] S. Herbst, H. Besserer, O. Grydin, A. Milenin, H.J. Maier, F. Nürnberger, J. Mater.Process. Tech. 229(2016)61–71.
    [17] C.P. Huang, X. Lin, F.C. Liu, J. Cao, F.G. Liu, W.D. Huang, Int. J Adv. Manuf.Technol. 82(2016)1269–1279.
    [18] M.K. Kang, D.M. Chen, S.P. Yang, G.L. Hu, Metall. Trans. A 23(1992)785–795.
    [19] Z.X. Qian, Y.C. Liu, L.M. Yu, Z.M. Gao, J. Alloys. Compd. 475(2009)560–564.
    [20] M.K. Kang, M.X. Zhang, M. Zhu, Acta Mater. 54(2006)2121–2129.
    [21] X. Lin, T.M. Yue, H.O. Yang, W.D. Huang, Acta Mater. 54(2006)1901–1915.
    [22] B.K. Vamsi, A. Bandyopadhyay, Mater. Des. 30(2009)1490–1496.
    [23] W. Kurz, D. Fisher, Acta Metall. 29(1981)11–20.
    [24] R.S. Amano, P.K. Rohatgi, Mater. Sci. Eng. A 528(2011)6680–6693.
    [25] F.G. Liu, X. Lin, M.H. Song, H.O. Yang, Y.Y. Zhang, L.L. Wang, W.D. Huang, J.Alloys. Compd. 621(2015)35–41.
    [26] B. Zhang, H. Fan, B.Q. Zhang, Dongfang Electric Review 27(2013)38–43.
    [27] R. Pippan, K. Flechsig, F.O. Riemelmoser, Mater. Sci. Eng. A 283(2000)225–233.
    [28] DIN EN 10083-1:2006.10.
    [29] C.W. Yao, B.S. Xu, J. Huang, P.L. Zhang, Y.X. Wu, Opt. Laser Eng. 48(2010)20–26.
    [30] C. Nills, Handbook of Fractography, ASM International, USA, 1990.
    [31] H.Y. Chen, D.D. Gu, D.H. Dai, C.L. Ma, M.J. Xia, Mater. Sci. Eng. A 682(2017)279–289.
    [32] C.X. Zhu, X.H. Tang, Y. He, F.G. Lu, H.C. Cui, J. Mater. Process. Tech. 251(2018)214–224.
    [33] H.Y. Chen, D.D. Gu, J.P. Xiong, M.J. Xia, J. Mater. Process. Tech. 250(2017)99–108.
    [34] T. Soysal, S. Kou, Acta Mater. 143(2018)181–197.
    [35] F. Matsuda, H. Nakagawa, S. Ogata, S. Katayama, Trans. JWRI 7(1978)59–70.
    [36] S. Leuders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H.A. Richard, H.J.Maier, Int. J. Fatigue 48(2013)300–307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700