Zircon U-Pb-Hf constraints from Gongga Shan granites on young crustal melting in eastern Tibet
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zircon U-Pb-Hf constraints from Gongga Shan granites on young crustal melting in eastern Tibet
  • 作者:Nick ; M.W.Roberts ; Michael ; P.Searle
  • 英文作者:Nick M.W.Roberts;Michael P.Searle;NERC Isotope Geosciences Laboratory, British Geological Survey, Environment Science Centre;Department of Earth Sciences, University of Oxford;
  • 英文关键词:Tibet;;Himalaya;;Hf isotopes;;Zircon;;Crustal melting
  • 中文刊名:GSFT
  • 英文刊名:地学前缘(英文版)
  • 机构:NERC Isotope Geosciences Laboratory, British Geological Survey, Environment Science Centre;Department of Earth Sciences, University of Oxford;
  • 出版日期:2019-05-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:v.10
  • 语种:英文;
  • 页:GSFT201903008
  • 页数:10
  • CN:03
  • ISSN:11-5920/P
  • 分类号:96-105
摘要
The Gongga Shan batholith is a complex granitoid batholith on the eastern margin of the Tibetan Plateau with a long history of magmatism spanning from the Triassic to the Pliocene. Late Miocene-Pliocene units are the youngest exposed crustal melts within the entire Asian plate of the Tibetan Plateau.Here, we present in-situ zircon Hf isotope constraints on their magmatic source, to aid the understanding of how these young melts were formed and how they were exhumed to the surface. Hf isotope signatures of Eocene to Pliocene zircon rims(ε_(Hf)(t)=-4 to +4), interpreted to have grown during localised crustal melting, are indicative of melting of a Neoproterozoic source region, equivalent to the nearby exposed Kangding Complex. Therefore, we suggest that Neoproterozoic crust underlies this region of the Songpan-Ganze terrane, and sourced the intrusive granites that form the Gongga Shan batholith. Localised young melting of Neoproterozoic lower or middle crust requires localised melt-fertile lithologies. We suggest that such melts may be equivalent to seismic and magnetotelluric low-velocity and high-conductivity zones or "bright spots" imaged across much of the Tibetan Plateau. The lack of widespread exposed melts this age is due either to the lack of melt-fertile rocks in the middle crust, the very low erosion level of the Tibetan plateau, or to a lack of mechanism for exhuming such melts. For Gongga Shan, where some melting is younger than nearby thermochronological ages of low temperature cooling, the exact process and timing of exhumation remains enigmatic, but their location away from the Xianshuihe fault precludes the fault acting as a conduit for the young melts. We suggest that underthrusting of dry granulites of the lower Indian crust(Archaean shield) this far northeast is a plausible mechanism to explain the uplift and exhumation of the eastern Tibetan Plateau.
        The Gongga Shan batholith is a complex granitoid batholith on the eastern margin of the Tibetan Plateau with a long history of magmatism spanning from the Triassic to the Pliocene. Late Miocene-Pliocene units are the youngest exposed crustal melts within the entire Asian plate of the Tibetan Plateau.Here, we present in-situ zircon Hf isotope constraints on their magmatic source, to aid the understanding of how these young melts were formed and how they were exhumed to the surface. Hf isotope signatures of Eocene to Pliocene zircon rims(ε_(Hf)(t)=-4 to +4), interpreted to have grown during localised crustal melting, are indicative of melting of a Neoproterozoic source region, equivalent to the nearby exposed Kangding Complex. Therefore, we suggest that Neoproterozoic crust underlies this region of the Songpan-Ganze terrane, and sourced the intrusive granites that form the Gongga Shan batholith. Localised young melting of Neoproterozoic lower or middle crust requires localised melt-fertile lithologies. We suggest that such melts may be equivalent to seismic and magnetotelluric low-velocity and high-conductivity zones or "bright spots" imaged across much of the Tibetan Plateau. The lack of widespread exposed melts this age is due either to the lack of melt-fertile rocks in the middle crust, the very low erosion level of the Tibetan plateau, or to a lack of mechanism for exhuming such melts. For Gongga Shan, where some melting is younger than nearby thermochronological ages of low temperature cooling, the exact process and timing of exhumation remains enigmatic, but their location away from the Xianshuihe fault precludes the fault acting as a conduit for the young melts. We suggest that underthrusting of dry granulites of the lower Indian crust(Archaean shield) this far northeast is a plausible mechanism to explain the uplift and exhumation of the eastern Tibetan Plateau.
引文
Airaghi, L, de Sigoyer, J., Lanari, P., Guillot, S., Vidal, O., Monie, P., Sautter, B., Tan, X.,2017. Total exhumation across the Beichuan fault in the Longmen Shan(eastern Tibetan plateau, China):constraints from petrology and thermobarometry.Journal of Asian Earth Sciences 140,108-121.
    Armijo, R., Tapponnier, P., Mercier, J.L, Han, T.L, 1986. Quaternary extension in southern Tibet:field observations and tectonic implications. Journal of Geophysical Research:Solid Earth 91,13803-13872.
    Beaumont, C., Jamieson, R.A., Nguyen, M.H., Lee, B., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738-742.
    Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR:constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273,48-57.
    Bruguier. O., Lancelot, J.R., Malavieille, J., 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch(Central China):provenance and tectonic correlations. Earth and Planetary Science Letters 152, 217-231.
    Brown, LD., Zhao, W., Nelson, K.D., Hauck, M., 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 274,1688.
    Burchfiel, B.C., Molnar, P., Ziyun, Z., K'uangyi, L, Shuji, W., Minmin, H., Sutter, J.,1989. Geology of the Ulugh Muztagh area, northern Tibet. Earth and Planetary Science Letters 94, 57-70.
    Cai, H., Zhang, H., Xu, W., 2009. U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic compositions of granitoids in western Songpan-Ganze fold belt:petrogenesis and implication for tectonic evolution. Journal of Earth Science 20,681-698.
    Cai, H., Zhang, H., Xu, W., Shi, Z., Yuan, H., 2010. Petrogenesis of Indosinian volcanic rocks in Songpan-Ganze fold belt of the northeastern Tibetan Plateau:new evidence for lithospheric delamination. Science China Earth Sciences 53,1316-1328.
    Chen, L, Booker, J.R., Jones, A.G., Wu, N., 1996. Electrically conductive crust in Southern Tibet form INDEPTH magnetotelluric surveying. Science 274.1694.
    Chen, Q,, Sun, M., Long, X., Yuan, C., 2015. Petrogenesis of neoproterozoic adakitic tonalites and high-K granites in the eastern Songpan-Ganze fold belt and implications for the tectonic evolution of the western Yangtze block. Precambrian Research 270.181-203.
    Chen, Y., Liu, F., Zhang, H., Nie, L, Jiang, L, 2007. Elemental and Sm-Nd isotopic geochemistry on detrital sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains. Frontiers of Earth Science in China 1, 60-68.
    Chen, Z., Liu, Y., Hodges, K.V., Burchfiel, B.C., Royden, LH., Deng, C., 1990. The Kangmar Dome:a metamorphic core complex in southern Xizang(Tibet).Science 250.1552-1557.
    Chen, Y., Luo, Z., Zhao, J., Li, Z., Zhang, H., Song, B., 2005. Petrogenesis and dating of the kangding complex, Sichuan Province. Science in China:Series D-Earth Sciences 48(5), 622-634.
    Chen, S.H.E., Wilson, C.J., Worley, B.A., 1995. Tectonic transition from the SongpanGarze fold belt to the Sichuan basin, south-western China. Basin Research 7,235-253.
    Chung, S.L, Chu, M.F., Zhang, Y., Xie, Y., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X., Zhang, Q.,Wang, Y., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Science Reviews 68,173-196.
    Cottle, J.M., Larson, K.P., Kellett, D.A., 2015. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. Journal of Structural Geology 78.119-133.
    Craig, T.J., Copley, A., Jackson, J., 2012. Thermal and tectonic consequences of India underthusting Tibet. Earth and Planetary Science Letters 353-354, 231-239.
    de Sigoyer, J., Vanderhaeghe, O., Duchene, S., Billerot, A., 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionaryorogenic wedge in a context of slab retreat accommodated by tear faulting,Eastern Tibetan plateau, China. Journal of Asian Earth Sciences 88,192-216.
    Decelles, P.G., Kapp, P., Gehrels, G.E., Ding, L, 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal:implications for the age of initial India-Asia collision. Tectonics 33, 824-849.
    Ding, L, Yang, D., Cai, F.L, Pullen, A., Kapp, P., Gehrels, G.E., Zhang, LY., Zhang, Q.H.,Lai, Q,Z., Yue, Y.H., Shi, R.D., 2013. Provenance analysis of the mesozoic Hoh-XilSongpan-Ganzi turbidites in northern Tibet:implications for the tectonic evolution of the eastern Paleo-Tethys ocean. Tectonics 32, 34-48.
    Enkelmann, E., Weislogel, A., Ratschbacher, L, Eide, E., Renno, A., Wooden, J., 2007.How was the Triassic Songpan-Ganzi basin filled? A provenance study.Tectonics 26.
    Fisher, C.M., Hanchar, J.M., Samson, S.D., Dhuime, B., Blichert-Toft, J., Vervoort, J.D.,Lam, R., 2011. Synthetic zircon doped with hafnium and rare earth elements:areference material for in situ hafnium isotope analysis. Chemical Geology 286,32-47.
    Gaillard, F., Scaillet, B., Pichavant, M., 2004. Evidence for present-day leucogranite pluton growth in Tibet. Geology 32, 801-804.
    Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L,Guynn, J., Martin, A., McQ.uarrie, N., Yin, A., 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30.
    Green, O.R., Searle, M.P., Corfield, R.I., Corfield, R.M., 2008. Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya(Northwest India). The Journal of Geology 116,331-353.
    Griffin, W.L, Wang, X.. Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., Zhou, X., 2002.Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes. Lithos 61, 237-269.
    Grujic, D., Hollister, LS., Parrish, R.R., 2002. Himalayan metamorphic sequence as an orogenic channel:insight from Bhutan. Earth and Planetary Science Letters 198,177-191.
    Guo, Z., Wilson, M., Liu, J., Mao, Q., 2006. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau:constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. Journal of Petrology 47,1177-1220.
    Harrison, T.M., Copeland, P., Kidd, W.S.F., Lovera, O.M., 1995. Activation of the Nyainqentanghla shear zone:implications for uplift of the southern Tibetan Plateau. Tectonics 14, 658-676.
    Harrowfield, M.J., Wilson, C.J., 2005. Indosinian deformation of the Songpan Ganze fold belt, northeast Tibetan Plateau. Journal of Structural Geology 27.101-117.
    Hodges, K.V., 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin 112, 324-350.
    Hollister, LS., Crawford, M.L, 1986. Melt-enhanced deformation:a major tectonic process. Geology 14, 558-561.
    Hou, Z.Q., Zheng, Y.C., Zeng, LS., Gao, LE., Huang, K.X., Li, W., Li, Q,Y., Fu, Q.,Liang, W., Sun, Q.Z., 2012. Eocene-Oligocene granitoids in southern Tibet:constraints on crustal anatexis and tectonic evolution of the Himalayan orogen.Earth and Planetary Science Letters 349, 38-52.
    Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., Webb, A., 2016. The timing of IndiaAsia collision onset-Facts, theories, controversies. Earth-Science Reviews 160,264-299.
    Huang, M.H., Buick, I.S., Hou, LW., 2003a. Tectonometamorphic evolution of the eastern Tibet plateau:evidence from the central Songpan-Garze orogenic belt,Western China. Journal of Petrology 44, 255-278.
    Huang, M., Maas, R., Buick, I.S., Williams, I.S., 2003b. Crustal response to continental collisions between the Tibet, Indian, South China and North China blocks:geochronological constraints from the Songpan-Ganze orogenic belt, western China. Journal of Metamorphic Geology 21, 223-240.
    Hubbard, J., Shaw, J.H., 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan(M=7.9)earthquake. Nature 458,194-197.
    Hubbard, J., Shaw, J.H., Klinger, Y., 2010. Structural setting of the 2008 Mw 7.9Wenchuan, China, earthquake. Bulletin of the Seismological Society of America100(5B), 2713-2735.
    Jamieson, R.A., Unsworth, M.J., Harris, N.B., Rosenberg, C.L, Schulmann, K., 2011.Crustal melting and the flow of mountains. Elements 7(4), 253-260.
    Kapp, J.L.A., Harrison, T.M., Kapp, P., Grove, M., Lovera, O.M., Lin, D., 2005. Nyainqentanglha Shan:a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research:Solid Earth 110(B8).
    Kapp, P., Taylor, M., Stockli, D., Ding, L, 2008. Development of active low-angle normal fault systems during orogenic collapse:insight from Tibet. Geology36.7-10.
    King, J., Harris, N.,Argles, T., Parrish, R., Zhang, H., 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet.Geological Society of America Bulletin 123, 218-239.
    Lai, Q., Ding, L, Wang, H., Yue, Y., Cai, F., 2007. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology. Science in China:Series D-Earth Sciences 50,172-183.
    Laskowski, A.K., Kapp, P., Ding, L, Campbell, C., Liu, X, 2017. Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet. Tectonics 36,108.https://doi.org/10.1002/2016TC004334.
    Li, H., Zhang, Y., 2013. Zircon U-Pb geochronology of the Konggar granitoid and migmatite:constraints on the Oligo-Miocene tectono-thermal evolution of the Xianshuihe fault zone, East Tibet. Tectonophysics 606,127-139.
    Li, H., Zhang, Y., Zhang, C., Dong, S., Zhu, F., 2015. Middle Jurassic syn-kinematic magmatism, anatexis and metamorphism in the Zheduo-Gonggar massif,implication for the deformation of the Xianshuihe fault zone, East Tibet. Journal of Asian Earth Sciences 107, 35-52.
    Li, S., Unsworth, M.J., Booker, J.R., Wei, W., Tan, H., Jones, A.G., 2003. Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophysical Journal International 153, 289-304.Li, Y., Jia, D., Shaw, J.H., Hubbard, J., Lin, A., Wang, M., Luo, L, Li, H., Wu, L., 2010.
    Structural interpretation of the coseismic faults of the Wenchuan earthquake:three-dimensional modeling of the Longmen Shan fold-and-thrust belt. Journal of Geophysical Research:Solid Earth 115.
    Li, Y, Jia.D., Wang, M., Shaw, J.H., He, J., Lin, A.,Xiong, L, Rao, G., 2014. Structural geometry of the source region for the 2013 Mw 6.6 Lushan earthquake:implication for earthquake hazard assessment along the Longmen Shan. Earth and Planetary Science Letters 390, 275-286.
    Liu, S.W., Wang, Z.Q., Yan, Q.R., Li, Q,G., Zhang, D.H., Wang, J.G., 2006. Timing,petrogenesis and geodynamic significance of Zheduoshan Granitoids. Acta Petrologica Sinica 22, 343-352.
    Liu, Q., Wu, Z., Hu, D., Ye, P., Jiang, W., Wang, Y., Zhang, H., 2004. SHRIMP U-Pb zircon dating on Nyainqentanglha granite in central Lhasa block. Chinese Science Bulletin 49, 76-82.
    Makovsky, Y., Klemperer, S.L, 1999. Measuring the seismic properties of Tibetan bright spots:evidence for free aqueous fluids in the Tibetan middle crust.Journal of Geophysical Research Solid Earth 104,10795-10825.
    Makovsky, Y., Klemperer, S.L, Ratschbacher, L, Brown, LD., Li, M., Zhao, W., Meng, F.,1996. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet. Science 274,1690-1692.
    Miller, C., Schuster, R., Kl(o|¨)tzli, U., Frank, W., Purtscheller, F., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology 40,1399-1424.
    Nabelek, J., Hétenyi, G., Vergne, J., et al., 2009. Underplating in the HimalayaTibet collision zone revealed by the Hi-CLIMB experiment. Science 325,1371-1374.
    Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E.,Godin, L, Han, J., Liebke, U., Oliver, G., Parrish, R., 2010. Timing of India-Asia collision:geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research:Solid Earth 115(B12).
    Najman, Y., Jenks, D., Godin, L, Boudagher-Fadel, M., Millar, I., Garzanti, E.,Horstwood, M., Bracciali, L, 2017. The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54 Ma in the Western Himalaya.Earth and Planetary Science Letters 459, 301-310.
    Nelson, K.D., Zhao, W., Brown, LD., Kuo, J., 1996. Partially molten middle crust beneath southern Tibet:synthesis of project INDEPTH results. Science 274,1684.
    Nowell, G., Parrish, R.R., 2001. Simultaneous acquisitionof isotope compositions and parent/daughter ratios by non-isotope dilution-modePlasma Ionisation Multicollector Mass Spectrometry(PIMMS). Special Publication-Royal Society Of Chemistry 267(1), 298-310.
    Preistley, K.. Jackson, J., McKenzie, D., 2008. Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophysical Journal International 172, 345-362.
    Roger, F., Calassou, S., Lancelot, J., Malavieille.J., Mattauer, M., Zhiqin, X., Ziwen, H.,Liwei, H., 1995. Miocene emplacement and deformation of the Konga Shan granite(Xianshui He fault zone, west Sichuan, China):geodynamic implications. Earth and Planetary Science Letters 130, 201-216.
    Roger, F., Jolivet.M., Malavieille, J., 2010. The tectonic evolution of the SongpanGarze(North Tibet)and adjacent areas from Proterozoic to Present:a synthesis.Journal of Asian Earth Sciences 39, 254-269.
    Roger, F., Malavieille, J., Leloup, P.H., Calassou, S., Xu, Z., 2004. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt(eastern Tibetan Plateau)with tectonic implications. Journal of Asian Earth Sciences 22,465-481.
    Rosenberg, C.L, Handy, M.R., 2005. Experimental deformation of partially melted granite revisited:implications for the continental crust. Journal of Metamorphic Geology 23,19-28.
    Searle, M.P., Cottle, J.M., Streule, M.J., Waters, D.J., 2010. Crustal melt granites and migmatites along the Himalaya:melt source, segregation, transport and granite emplacement mechanisms. Geological Society of America Special Papers 472,219-233.
    Searle, M.P., Elliott, J.R., Phillips, R.J., Chung, S.-L., 2011. Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society,London 168, 633-672. https://doi.org/10.1144/0016-76492010-139.
    Searle, M.P., Law, R.D., Jessup, M.J., 2006. Crustal structure, restoration and evolution of the Greater Himalaya in Nepal-South Tibet:implications for channel flow and ductile extrusion of the middle crust. Geological Society, London, Special Publications 268, 355-378.
    Searle, M.P., Roberts, N.M., Chung, S.L, Lee, Y.H., Cook, K.L, Elliott, J.R., Weller, O.M.,St-Onge, M.R., Xu, X.W., Tan, X.B., Li, K., 2016. Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault. Geosphere 12, 948-970.
    Slama, J., et al., 2008. Plesovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249.1-35.
    Soderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176 Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311-324.
    Streule, M.J., Searle, M.P., Waters, D.J., Horstwood, M.S., 2010. Metamorphism,melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite:constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics 29, TC5011. https://doi.org/10.1029/2009TC002533.
    Unsworth, M.J., Jones, A.G., Wei, W., Marquis, G., Gokarn, S.G., Spratt, J.E.,Bedrosian, P., Booker, J., Leshou, C., Clarke, G., Shenghui, L, 2005. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438, 78-81.
    Wang, Z., Huang, R., Pei, S., 2014. Crustal deformation along the Longmen-Shan fault zone and its implications for seismogenesis. Tectonophysics 610,128-137.
    Wang, W., Liu, S., Feng, Y., Li, Q., Wu, F., Wang, Z., Wang, R., Yang, P., 2012. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block:constraintsfrom geochemistry and zircon U-Pb-Hf isotopic systematics. Gondwana Research 22, 699-716.
    Wei, W., Unsworth, M., Jones, A., Booker, J., Tan, H., Nelson, D., Chen, L, Li, S.,Solon, K., Bedrosian, P., Jin, S., 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292, 716-719.
    Weislogel, A.L., 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics 451(1), 331-345.
    Weislogel, A.L, Graham. SA., Chang,EZ, Wooden, J.L, Gehrels, G.E, Yang, H., 2006.Detrital zircon provenance of the late Triassic Songpan-Ganzi complex:sedimentary record of collision of the north and south China blocks. Geology 34, 97-100.
    Weislogel, A.L. Graham, S.A.. Chang, E.Z., Wooden, J.L, Gehrels, G.E., 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex. central China:record of collisional tectonics,erosional exhumation, and sediment production. Geological Society of America Bulletin 122, 2041-2062.
    Weller, O.M., St-Onge, M.R., Waters, D.J., Rayner, N., Searle, M.P., Chung, S.-L,Palin, R.M., Lee, Y.-H., Xu, X., 2013. Quantifying Barrovian metamorphism in the Danba structural culmination of eastern Tibet. Journal of Metamorphic Geology.https://doi.org/10.1111/jmg.12050.
    Weller, O.M., St-Onge, M.R., Rayner, N., Searle, M.P., Waters, D.J., 2016. Miocene magmatism in the Western Nyainqentanglha mountains of southern Tibet:an exhumed bright spot? Lithos 245,147-160.
    Wiedenbeck, M.A.P.C., et al., 1995. Three natural zircon standards for U-Th-Pb,Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19,1-23.
    Wiedenbeck, M.A.P.C., et al., 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research 28, 9-39.
    Williams, H.M., Turner, S.P., Pearce, J.A., Kelley, S.P., Harris, N.B.W., 2004. Nature of the source regions for post-coilisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling. Journal of Petrology 45, 555-607.
    Xiao, L, Zhang, H.F., Clemens, J.D., Wang, Q.W., Kan, Z.Z., Wang, K.M., Ni, P.Z.,Liu, X.M., 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau:geochronology, petrogenesis and implications for tectonic evolution.Lithos 96, 436-452.
    Xu, R.H., Sch(a|¨)rer, U., Allègre, C.J., 1985. Magmatism and metamorphism in the Lhasa block(Tibet):a geochronological study. The Journal of Geology 93, 41-57.
    Yuan, C., Zhou, M.F., Sun, M., Zhao, Y., Wilde, S., Long, X., Yan, D., 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China:magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters 290, 481-492.
    Zeng, L, Gao, LE., Xie, K., Liu-Zeng, J., 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:melting thickened lower continental crust.Earth and Planetary Science Letters 303, 251-266.
    Zhang, H.F., Parrish, R., Zhang, L, Xu, W.C., Yuan, H.L, Gao, S., Crowley, Q,G., 2007. A-type granite and adakitic magmatism association in Songpan-Ganze fold belt, eastern Tibetan Plateau:implication for lithospheric delamination. Lithos 97, 323-335.
    Zhang, H.F., Zhang, L, Harris, N., Jin, LL, Yuan, H., 2006. U-Pb zircon ages,geochemical and isotopic compositions of granitoids in Songpan-Ganze fold belt,eastern Tibetan Plateau:constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology 152(1), 75-88.
    Zhang, Y.X., Tang, X.C., Zhang, K.J., Zeng, L, Gao. C.L. 2014. U-Pb and Lu-Hf isotope systematics of detrital zircons from the Songpan-Ganzi Triassic flysch, NE Tibetan Plateau:implications for provenance and crustal growth. International Geology Review 56, 29-56.
    Zhang, Y.X., Zeng, L, Li, Z.W., Wang, C.S., Zhang, K.J., Yang, W.G., Guo, T.L, 2015. Late Permian-Triassic siliciclastic provenance, palaeogeography, and crustal growth of the Songpan terrane, eastern Tibetan Plateau:evidence from U-Pb ages,trace elements, and Hf isotopes of detrital zircons. International Geology Review 57.159-181.
    Zhang, Y.Z., Replumaz, A., Leloup, P.H., Wang, G.C., Bernet, M., van der Beek, P.,Paquette, J.L, Chevalier, M.L, 2017. Cooling history of the Gongga batholith:implications for the Xianshuihe fault and Miocene kinematics of SE Tibet. Earth and Planetary Science Letters 465.1-15.
    Zhao, J.H., Zhou, M.F., 2007a. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China):implications for subduction-related metasomatism in the upper mantle. Precambrian Research152, 27-47.
    Zhao, J.H., Zhou, M.F., 2007b. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China. The Journal of Geology 115, 675-689.
    Zhao, J.H., Zhou, M.F., Yan, D.P., Yang, Y.H., Sun, M., 2008a. Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China. Precambrian Research 163,189-209.
    Zhao, X.F., Zhou, M.F., Li, J.W., Wu, F.Y., 2008b. Association of Neoproterozoic A-and I-type granites in South China:implications for generation of A-type granites in a subduction-related environment. Chemical Geology 257(1), 1-15.
    Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, Y.B., Li, X., Li, Z., Wu, F.Y., 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust. Lithos96,127-150.
    Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y., Ding, J., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters 196(1), 51-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700