日光诱导叶绿素荧光遥感反演及碳循环应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application
  • 作者:章钊颖 ; 王松寒 ; 邱博 ; 宋练 ; 张永光
  • 英文作者:ZHANG Zhaoying;WANG Songhan;QIU Bo;SONG Lian;ZHANG Yongguang;Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application;
  • 关键词:日光诱导叶绿素荧光 ; GPP模拟 ; 碳循环监测 ; 植被物候监测 ; 植被胁迫监测
  • 英文关键词:sun-induced Chlorophyll fluorescence;;GPP modeling;;global carbon cycle;;phenology monitoring;;stress monitoring
  • 中文刊名:YGXB
  • 英文刊名:Journal of Remote Sensing
  • 机构:南京大学国际地球系统科学研究所;江苏省全球变化协同创新中心;
  • 出版日期:2019-01-25
  • 出版单位:遥感学报
  • 年:2019
  • 期:v.23
  • 基金:国家重点研发计划(编号:2016YFA0600202);; 江苏省杰出青年基金(编号:BK20170018);; 国家自然科学基金(编号:41671421,41761134082)~~
  • 语种:中文;
  • 页:YGXB201901004
  • 页数:16
  • CN:01
  • ISSN:11-3841/TP
  • 分类号:41-56
摘要
在植被遥感领域,遥感植被指数在过去30年极大地促进了从宏观尺度上来理解和认识地球生物圈,但是以"绿度"观测为主的植被指数仅表征植被"潜在光合作用",而不能直接量化"实际光合作用"。植被叶绿素荧光在光合作用探测上具有优势,是"实际光合作用"的直接探测方法。日光诱导叶绿素荧光(SIF)遥感是近年快速发展起来的新型遥感技术,尤其是2011年实现全球尺度卫星反演以来,在反演算法、植被监测和碳循环应用等方面发展迅速,是近10年来植被遥感领域最具突破性的研究前沿。本文阐述了现阶段(2011年以来)SIF遥感反演及其在碳循环应用方面的进展。本文首先介绍了卫星SIF遥感的发展及其反演算法现状;然后重点剖析了其在陆地生态系统总初级生产力(GPP)估算、全球碳循环监测、物候和植被胁迫监测等方面的应用现状和特点;最后从卫星SIF反演算法优化、SIF-GPP关系机理、SIF多尺度综合观测和全球碳循环监测等方面对今后植被SIF遥感的发展前景进行了展望。
        The emerging technique of remotely sensed sun-induced fluorescence(SIF) offers great advantages for estimating the gross primary photosynthetic(GPP) and investigating carbon cycles at regional and global scales. This novel satellite product is a state-of-the-art and booming avenue in recent years. Particularly, the flourishing progressions in retrieval techniques, vegetation monitoring, and applications in carbon cycle model have been accelerated to implement a satellite-based inversion at a global scale since 2011. During photosynthesis, part of solar radiation absorbed by chlorophyll is re-emitted at long wavelengths(fluorescence). Chlorophyll fluorescence is an electromagnetic emission in the 650–800 nm range originating at the core of the photosynthetic machinery. It been used in leaf-scale studies of photosynthesis in laboratory conditions for several decades. By using new, high-resolution spectrometers, chlorophyll fluorescence can be readily retrieved from satellite platforms. This scheme can be used to quantify the photosynthetic activity and efficiency globally. Satellite observations of chlorophyll fluorescence are important to reduce the uncertainties in research of global carbon cycle and climate change. In this review, we introduced the recent development in the remote sensing of SIF. First, recent instrumental and methodological developments in the field of spaceborne spectroscopy have rendered the measurement of SIF from space possible, which can alleviate the current limitations for the monitoring of terrestrial photosynthesis. Since 2011, the global data of SIF have been retrieved from a series of spaceborne instruments providing high-resolution spectra, such as the GOSAT's Fourier transform spectrometer, ENVISAT/SCIAMACHY, MetOp-A/GOME-2, and OCO-2. The spatial coverage and resolution, wavelength, acquisition time, and amount of data available for analysis depend on the instrument from which they are derived. As a complement to reflectance-based vegetation indices, SIF offers new possibilities to monitor photosynthesis and GPP of terrestrial ecosystem from space. The potential of SIF, which is an indicator of large-scale GPP, has been demonstrated in a relatively short life time of global SIF data. Recent studies have shown that satellite observations of SIF are an excellent proxy for GPP at canopy and ecosystem scales.Meanwhile, spaceborne SIF data have also been used to monitor large-scale vegetation status in drought conditions, thereby suggesting that SIF provides unique, perhaps most direct, information from space for early warning and accurate monitoring of emerging drought. The potential of SIF as a constraint on regional and global carbon cycle variations has also been demonstrated together with the XCO2 data from GOSAT and OCO-2. Despite this experimental evidence of a direct and linear correlation between spatio-temporal aggregates of remotely sensed SIF data and large-scale GPP, the relationship between instantaneous photosynthesis and SIF is relatively complicated. Further study is necessary to investigate how the remotely sensed SIF signal can be used for plant photosynthesis monitoring, how we can interpret the SIF signal at various spatial and temporal scales, and how we link the active PAM measurements with canopy SIF at the seasonal scale. At the end of this review, we proposed a number of areas where further research can be conducted to better understand the mechanisms that govern the seasonality of canopy-and leaf-level SIF signal and its relation with photosynthesis. Several prospective areas for future work include improving the accuracy of retrievals with additional data, characterizing the mechanistic relationship between SIF and GPP across scales, measurements of near-surface continuous SIF along with eddy covariance flux system, data assimilation of SIF into land surface models, and development of new index for stress detection from SIF.
引文
A?A,MalenovskyZ,Olejní?kováJ,GalléA,Rascher U and Mohammed G.2015.Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water,temperature and nitrogen stress.Remote Sensing of Environment,168:420-436[DOI:10.1016/j.rse.2015.07.022]
    Agati G.1998.Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength.Pure and Applied Optics,7(4):797-807[DOI:10.1088/0963-9659/7/4/016]
    Amoros-Lopez J,Gomez-Chova L,Vila-Frances J,Alonso L,Calpe J,Moreno J and del Valle-Tascon S.2008.Evaluation of remote sensing of vegetation fluorescence by the analysis of diurnal cycles.International Journal of Remote Sensing,29(17/18):5423-5436[DOI:10.1080/01431160802036391]
    Bauerle W L,Oren R,Way D A,Qian S S,Stoy P C,Thornton P E,Bowden J D,Hoffman F M and Reynolds R F.2012.Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling.Proceedings of the National Academy of Sciences of the United States of America,109(22):8612-8617[DOI:10.1073/pnas.1119131109]
    Breshears D D,Cobb N S,Rich P M,Price K P,Allen C D,Balice R G,Romme W H,Kastens J H,Floyd M L,Belnap J,Anderson J J,Myers O B and Meyer C W.2005.Regional vegetation die-off in response to global-change-type drought.Proceedings of the National Academy of Sciences of the United States of America,102(42):15144-15148[DOI:10.1073/pnas.0505734102]
    Cogliati S,Verhoef W,Kraft S,Sabater N,Alonso L,Vicent J,Moreno J,Drusch M and Colombo R.2015.Retrieval of sun-induced fluorescence using advanced spectral fitting methods.Remote Sensing of Environment,169:344-357[DOI:10.1016/j.rse.2015.08.022]
    Croft H,Chen J M,Luo X Z,Bartlett P,Chen B and Staebler R M.2017.Leaf chlorophyll content as a proxy for leaf photosynthetic capacity.Global Change Biology,23(9):3513-3524[DOI:10.1111/gcb.13599]
    Damm A,Elbers J,Erler A,Gioli B,Hamdi K,Hutjes R,Kosvancova M,Meroni M,Miglietta F,Moersch A,Moreno J,Schickling A,Sonnenschein R,Udelhoven T,Van Der Linden S,Hostert P and Rascher U.2010.Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production(GPP).Global Change Biology,16(1):171-186[DOI:10.1111/j.1365-2486.2009.01908.x]
    Damm A,Guanter L,Paul-Limoges E,van der Tol C,Hueni A,Buchmann N,Eugster W,Ammann C and Schaepman M E.2015a.Farred sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production:an assessment based on observational and modeling approaches.Remote Sensing of Environment,166:91-105[DOI:10.1016/j.rse.2015.06.004]
    Damm A,Guanter L,Verhoef W,Schl?pfer D,Garbari S and Schaepman M E.2015b.Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data.Remote Sensing of Environment,156:202-215[DOI:10.1016/j.rse.2014.09.031]
    Detmers R G,Hasekamp O,Aben I,Houweling S,van Leeuwen T T,Butz A,Landgraf J,K?hler P,Guanter L and Poulter B.2015.Anomalous carbon uptake in Australia as seen by GOSAT.Geophysical Research Letters,42(19):8177-8184[DOI:10.1002/2015GL065161]
    Di L P,Rundquis D C and Han L H.1994.Modelling relationships between NDVI and precipitation during vegetative growth cycles.International Journal of Remote Sensing,15(10):2121-2136[DOI:10.1080/01431169408954231]
    Dobrowski S Z,Pushnik J C,Zarco-Tejada P J and Ustin S L.2005.Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale.Remote Sensing of Environment,97(3):403-414[DOI:10.1016/j.rse.2005.05.006]
    Dragoni D,Schmid H P,Wayson C A,Potter H,Grimmond C S B and Randolph J C.2011.Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana,USA.Global Change Biology,17(2):886-897[DOI:10.1111/j.1365-2486.2010.02281.x]
    Du S S,Liu L Y,Liu X J and Hu J C.2017.Response of canopy solarinduced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll.Remote Sensing,9(12):911[DOI:10.3390/rs9090911]
    Flexas J,Escalona J M,Evain S,Gulías J,Moya I,Osmond C B and Medrano H.2002.Steady-state chlorophyll fluorescence(Fs)measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants.Physiologia Plantarum,114(2):231-240[DOI:10.1034/j.1399-3054.2002.1140209.x]
    Franck F,Juneau P and Popovic R.2002.Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature.Biochimica et Biophysica Acta(BBA)-Bioenergetics,1556(2/3):239-246[DOI:10.1016/S0005-2728(02)00366-3]
    Frankenberg C,Fisher J B,Worden J,Badgley G,Saatchi S S,Lee J E,Toon G C,Butz A,Jung M,Kuze A and Yokota T.2011.New global observations of the terrestrial carbon cycle from GOSAT:patterns of plant fluorescence with gross primary productivity.Geophysical Research Letters,38(17):L17706[DOI:10.1029/2011GL048738]
    Frankenberg C,O’Dell C,Berry J,Guanter L,Joiner J,K?hler P,Pollock R and Taylor T E.2014.Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2.Remote Sensing of Environment,147:1-12[DOI:10.1016/j.rse.2014.02.007]
    Green J K,Konings A G,Alemohammad S H,Berry J,Entekhabi D,Kolassa J,Lee J E and Gentine P.2017.Regionally strong feedbacks between the atmosphere and terrestrial biosphere.Nature Geoscience,10(6):410-414[DOI:10.1038/ngeo2957]
    Guan K Y,Berry J A,Zhang Y G,Joiner J,Guanter L,Badgley G and Lobell D B.2016.Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence.Global Change Biology,22(2):716-726[DOI:10.1111/gcb.13136]
    Guanter L,Aben I,Tol P,Krijger J M,Hollstein A,K?hler P,Damm A,Joiner J,Frankenberg C and Landgraf J.2015.Potential of the TROPOspheric Monitoring Instrument(TROPOMI)onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence.Atmospheric Measurement Techniques,8(3):1337-1352[DOI:10.5194/amt-8-1337-2015]
    Guanter L,Alonso L,Gómez-Chova L,Amorós-López J,Vila J and Moreno J.2007.Estimation of solar-induced vegetation fluorescence from space measurements.Geophysical Research Letters,34:L08401[DOI:10.1029/2007GL029289]
    Guanter L,Alonso L,Gómez-Chova L,Meroni M,Preusker R,Fischer J and Moreno J.2010.Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands.Journal of Geophysical Research,115:D19303[DOI:10.1029/2009JD013716]
    Guanter L,Frankenberg C,Dudhia A,Lewis P E,Gómez-Dans J,Kuze A,Suto H and Grainger R G.2012.Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements.Remote Sensing of Environment,121:236-251[DOI:10.1016/j.rse.2012.02.006]
    Guanter L,Rossini M,Colombo R,Meroni M,Frankenberg C,Lee J Eand Joiner J.2013.Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space.Remote Sensing of Environment,133:52-61[DOI:10.1016/j.rse.2013.01.017]
    Guanter L,Zhang Y G,Jung M,Joiner J,Voigt M,Berry J A,Frankenberg C,Huete A R,Zarco-Tejada P,Lee J E,Moran M S,PonceCampos G,Beer C,Camps-Valls G,Buchmann N,Gianelle D,Klumpp K,Cescatti A,Baker J M and Griffis T J.2014.Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.Proceedings of the National Academy of Sciences of the United States of America,111(14):E1327-E1333[DOI:10.1073/pnas.1320008111]
    He L M,Chen J M,Liu J,Mo G and Joiner J.2017.Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity.Geophysical Research Letters,44(11):5691-5699[DOI:10.1002/2017GL073708]
    Jeong S J,Schimel D,Frankenberg C,Drewry D T,Fisher J B,Verma M,Berry J A,Lee J E and Joiner J.2017.Application of satellite solar-induced chlorophyll fluorescence to understanding largescale variations in vegetation phenology and function over northern high latitude forests.Remote Sensing of Environment,190:178-187[DOI:10.1016/j.rse.2016.11.021]
    Jeong S J,Ho C H,Choi S D,Kim J,Lee E J and Gim H J.2013.Satellite data-based phenological evaluation of the nationwide reforestation of South Korea.PLoS One,8(3):e58900[DOI:10.1371/journal.pone.0058900]
    Jeong S J,Ho C H,Gim H J and Brown M E.2011.Phenology shifts at start vs.end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008.Global Change Biology,17(7):2385-2399[DOI:10.1111/j.1365-2486.2011.02397.x]
    Ji L and Peters A J.2003.Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices.Remote Sensing of Environment,87(1):85-98[DOI:10.1016/S0034-4257(03)00174-3]
    Joiner J,Guanter L,Lindstrot R,Voigt M,Vasilkov A P,Middleton EM,Huemmrich K F,Yoshida Y and Frankenberg C.2013.Global monitoring of terrestrial chlorophyll fluorescence from moderatespectral-resolution near-infrared satellite measurements:methodology,simulations,and application to GOME-2.Atmospheric Measurement Techniques,6(10):2803-2823[DOI:10.5194/amt-6-2803-2013]
    Joiner J,Yoshida Y,Guanter L and Middleton E M.2016.New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments:simulations and application to GOME-2 and SCIAMACHY.Atmospheric Measurement Techniques,9:3939-3967[DOI:10.5194/amt-2015-387]
    Joiner J,Yoshida Y,Vasilkov A P,Middleton E M,Campbell P K E,Yoshida Y,Kuze A and Corp L A.2012.Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects:simulations and space-based observations from SCIA-MACHY and GOSAT.Atmospheric Measurement Techniques,5(4):809-829[DOI:10.5194/amt-5-809-2012]
    Joiner J,Yoshida Y,Vasilkov A P,Schaefer K,Jung M,Guanter L,Zhang Y,Garrity S,Middleton E M,Huemmrich K F,Gu L and Belelli Marchesini L.2014.The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange.Remote Sensing of Environment,152:375-391[DOI:10.1016/j.rse.2014.06.022]
    Joiner J,Yoshida Y,Vasilkov A P,Yoshida Y,Corp L A and Middleton E M.2011.First observations of global and seasonal terrestrial chlorophyll fluorescence from space.Biogeosciences,8(3):637-651[DOI:10.5194/bg-8-637-2011]
    Knyazikhin Y,Schull M A,Stenberg P,Mottus M,Rautiainen M,Yang Y,Marshak A,Latorre Carmona P,Kaufmann R K,Lewis P,Disney M I,Vanderbilt V,Davis A B,Baret F,Jacquemoud S,Lyapustin A and Myneni R B.2013.Hyperspectral remote sensing of foliar nitrogen content.Proceedings of the National Academy of Sciences of the United States of America,110(3):E185-E192[DOI:10.1073/pnas.1210196109]
    Koffi E N,Rayner P J,Norton A J,Frankenberg C and Scholze M.2015.Investigating the usefulness of satellite derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system.Biogeosciences,12(13):4067-4084[DOI:10.5194/bg-12-4067-2015]
    K?hler P,Guanter L and Joiner J.2015.A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data.Atmospheric Measurement Techniques,8(6):2589-2608[DOI:10.5194/amt-8-2589-2015]
    Krumov A,Nikolova A,Vassilev V and Vassilev N.2008.Assessment of plant vitality detection through fluorescence and reflectance imagery.Advances in Space Research,41(11):1870-1875[DOI:10.1016/j.asr.2007.11.020]
    Lee J E,Berry J A,van der Tol C,Yang X,Guanter L,Damm A,Baker I and Frankenberg C.2015.Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4.Global Change Biology,21(9):3469-3477[DOI:10.1111/gcb.12948]
    Lee J E,Frankenberg C,van der Tol C,Berry J A,Guanter L,Boyce CK,Fisher J B,Morrow E,Worden J R,Asefi S,Badgley G and Saatchi S.2013.Forest productivity and water stress in Amazonia:observations from GOSAT chlorophyll fluorescence.Proceedings of the Royal Society B:Biological Sciences,280(1761):20130171[DOI:10.1098/rspb.2013.0171]
    Liu J J,Bowman K W,Schimel D S,Parazoo N C,Jiang Z,Lee M,Bloom A A,Wunch D,Frankenberg C,Sun Y,O’Dell C W,Gurney K R,Menemenlis D,Gierach M,Crisp D and Eldering A.2017.Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Ni?o.Science,358(6360):eaam5690[DOI:10.1126/science.aam5690]
    Liu X J,Liu L Y,Zhang S and Zhou X F.2015.New spectral fitting method for full-spectrum solar-induced chlorophyll fluorescence retrieval based on principal components analysis.Remote Sensing,7(8):10626-10645[DOI:10.3390/rs70810626]
    Luus K A,Commane R,Parazoo N C,Benmergui J,Euskirchen E S,Frankenberg C,Joiner J,Lindaas J,Miller C E,Oechel W C,Zona D,Wofsy S and Lin J C.2017.Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence.Geophysical Research Letters,44(3):1564-1573[DOI:10.1002/2016GL070842]
    Mazzoni M,Meroni M,Fortunato C,Colombo R and Verhoef W.2012.Retrieval of maize canopy fluorescence and reflectance by spectral fitting in the O2-A absorption band.Remote Sensing of Environment,124:72-82[DOI:10.1016/j.rse.2012.04.025]
    Medrano H,Escalona J M,Bota J,Gulías J and Flexas J.2002.Regulation of photosynthesis of C3 plants in response to progressive drought:stomatal conductance as a reference parameter.Annals of Botany,89(7):895-905[DOI:10.1093/aob/mcf079]
    Meroni M,Picchi V,Rossini M,Cogliati S,Panigada C,Nali C,Lorenzini G and Colombo R.2008.Leaf level early assessment of ozone injuries by passive fluorescence and photochemical reflectance index.International Journal of Remote Sensing,29(17/18):5409-5422[DOI:10.1080/01431160802036292]
    Meroni M,Rossini M,Guanter L,Alonso L,Rascher U,Colombo Rand Moreno J.2009.Remote sensing of solar-induced chlorophyll fluorescence:review of methods and applications.Remote Sensing of Environment,113(10):2037-2051[DOI:10.1016/j.rse.2009.05.003]
    Monteith J L.1972.Solar radiation and productivity in tropical ecosystems.The Journal of Applied Ecology,9(3):747-766[DOI:10.2307/2401901]
    Neuner G and Larcher W.1990.Determination of differences in chilling susceptibility of two soybean varieties by means of in vivo chlorophyll fluorescence measurements.Journal of Agronomy and Crop Science,164(2):73-80[DOI:10.1111/j.1439-037X.1990.tb00788.x]
    Norton A J,Rayner P J,Koffi E N and Scholze M.2017.Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE:model description and information content.Geoscientific Model Development:1-26[DOI:10.5194/gmd-2017-34]
    Parazoo N C,Bowman K,Frankenberg C,Lee J E,Fisher J B,Worden J,Jones D B A,Berry J,Collatz G J,Baker I T,Jung M,Liu J J,Osterman G,O’Dell C,Sparks At,Butz A,Guerlet S,Yoshida Y,Chen H L and Gerbig C.2013.Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT.Geophysical Research Letters,40(11):2829-2833[DOI:10.1002/grl.50452]
    Perez-Priego O,Zarco-Tejada P J,Miller J R,Sepulcre-Canto G and Fereres E.2005.Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence infilling of the O2-A band.IEEE Transactions on Geoscience and Remote Sensing,43(12):2860-2869[DOI:10.1109/TGRS.2005.857906]
    Piao S L,Ciais P,Friedlingstein P,Peylin P,Reichstein M,Luyssaert S,Margolis H,Fang J Y,Barr A,Chen A P,Grelle A,Hollinger D Y,Laurila T,Lindroth A,Richardson A D and Vesala T.2008.Net carbon dioxide losses of northern ecosystems in response to autumn warming.Nature,451(7174):49-52[DOI:10.1038/nature06444]
    Piao S L,Mohammat A,Fang J Y,Cai Q and Feng J M.2006.NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China.Global Environmental Change,16(4):340-348[DOI:10.1016/j.gloenvcha.2006.02.002]
    Plascyk J A and Gabriel F C.1975.The fraunhofer line discriminator MKII-An airborne instrument for precise and standardized ecological luminescence measurement.IEEE Transactions on Instrumentation and Measurement,24(4):306-313[DOI:10.1109/TIM.1975.4314448]
    Porcar-Castell A,Tyystj?rvi E,Atherton J,van der Tol C,Flexas J,Pfündel E E,Moreno J,Frankenberg C and Berry J A.2014.Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:mechanisms and challenges.Journal of Experimental Botany,65(15):4065-4095[DOI:10.1093/jxb/eru191]
    Rathcke B and Lacey E P.1985.Phenological patterns of terrestrial plants.Annual Review of Ecology and Systematics,16(1):179-214[DOI:10.1146/annurev.es.16.110185.001143]
    Richardson A D,Hollinger D Y,Dail D B,Lee J T,Munger J W and O’Keefe J.2009.Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.Tree Physiology,29(3):321-331[DOI:10.1093/treephys/tpn040]
    Rossini M,Nedbal L,Guanter L,A?A,Alonso L,Burkart A,Cogliati S,Colombo R,Damm A,Drusch M,Hanus J,Janoutova R,Julitta T,Kokkalis P,Moreno J,Novotny J,Panigada C,Pinto F,Schickling A,Schüttemeyer D,Zemek F and Rascher U.2015.Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis.Geophysical Research Letters,42(6):1632-1639[DOI:10.1002/2014GL062943]
    Sanders A F J,Verstraeten W W,Kooreman M L,van Leth T C,Beringer J and Joiner J.2016.Spaceborne sun-induced vegetation fluorescence time series from 2007 to 2015 evaluated with australian flux tower measurements.Remote Sensing,8(12):895[DOI:10.3390/rs8110895]
    Shen M G,Tang Y H,Desai A R,Gough C and Chen J.2014.Can EVI-derived land-surface phenology be used as a surrogate for phenology of canopy photosynthesis?.International Journal of Remote Sensing,35(3):1162-1174[DOI:10.1080/01431161.2013.875636]
    Sun Y,Fu R,Dickinson R,Joiner J,Frankenberg C,Gu L H,Xia Y Land Fernando N.2015.Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence:insights from two contrasting extreme events.Journal of Geophysical Research:Biogeosciences,120(11):2427-2440[DOI:10.1002/2015JG003150]
    Sun Y,Frankenberg C,Wood J D,Schimel D S,Jung M,Guanter L,Drewry D T,Verma M,Porcar-Castell A,Griffis T J,Gu L,Magney T S,K?hler P,Evans B and Yuen K.2017.OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence.Science,358(6360):eaam5747[DOI:10.1126/science.aam5747]
    Thum T,Zaehle S,K?hler P,Aalto T,Aurela M,Guanter L,Kolari P,Laurila T,Lohila A,Magnani F,Van der Tol C and Markkanen T.2017.Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe.Biogeosciences,14(7):1969-1987[DOI:10.5194/bg-14-1969-2017]
    Walther S,Voigt M,Thum T,Gonsamo A,Zhang YvG,K?hler P,Jung M,Varlagin A and Guanter L.2016.Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests.Global Change Biology,22(9):2979-2996[DOI:10.1111/gcb.13200]
    Wang R,Liu Z G,and Yang P Q.2012.Principle and progress in remote sensing of vegetation solar-induced chlorophyll fluorescence.Advances in Earth Science,27(11):1221-1228(王冉,刘志刚,杨沛琦.2012.植物日光诱导叶绿素荧光的遥感原理及研究进展.地球科学进展,27(11):1221-1228)
    Wang S H,Huang C P,Zhang L F,Lin Y,Cen Y and Wu T X.2016.Monitoring and assessing the 2012 drought in the great plains:analyzing satellite-retrieved solar-induced chlorophyll fluorescence,drought indices,and gross primary production.Remote Sensing,8(2):61[DOI:10.3390/rs8020061]
    White M A,De Beurs K M,Didan K,Inouye D W,Richardson A D,Jensen O P,O’Keefe J,Zhang G,Nemani R R,Van Leeuwen W JD,Brown J F,De Wit A,Schaepman M,Lin X M,Dettinger M,Bailey A S,Kimball J,Schwartz M D,Baldocchi D D,Lee J T and Lauenroth W K.2009.Intercomparison,interpretation,and assessment of spring phenology in North America estimated from remote sensing for 1982-2006.Global Change Biology,15(10):2335-2359[DOI:10.1111/j.1365-2486.2009.01910.x]
    Wolanin A,Rozanov V V,Dinter T,No?l S,Vountas M,Burrows J Pand Bracher A.2015.Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements:feasibility study and first results.Remote Sensing of Environment,166:243-261[DOI:10.1016/j.rse.2015.05.018]
    Yang W,Yang L and Merchant J W.1997.An assessment of AVHRR/NDVI-ecoclimatological relations in Nebraska,U.S.A.International Journal of Remote Sensing,18(10):2161-2180[DOI:10.1080/014311697217819]
    Yang X,Tang J W,Mustard J F,Lee J E,Rossini M,Joiner J,Munger JW,Kornfeld A and Richardson A D.2015.Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest.Geophysical Research Letters,42(8):2977-2987[DOI:10.1002/2015GL063201]
    Yoshida Y,Joiner J,Tucker C,Berry J,Lee J E,Walker G,Reichle R,Koster R,Lyapustin A and Wang Y.2015.The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence:insights from modeling and comparisons with parameters derived from satellite reflectances.Remote Sensing of Environment,166:163-177[DOI:10.1016/j.rse.2015.06.008]
    Zarco-Tejada P J,Morales A,Testi L and Villalobos F J.2013.Spatiotemporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance.Remote Sensing of Environment,133:102-115[DOI:10.1016/j.rse.2013.02.003]
    Zhang Y G,Guanter L,Berry J A,Joiner J,van der Tol C,Huete A,Gitelson A,Voigt M and K?hler P.2014.Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.Global Change Biology,20(12):3727-3742[DOI:10.1111/gcb.12664]
    Zhang Y G,Guanter L,Berry J A,van der Tol C,Yang X,Tang J Wand Zhang F M.2016.Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications.Remote Sensing of Environment,187:145-155[DOI:10.1016/j.rse.2016.10.016]
    Zhang Y J,Liu L Y,Hou M Y,Liu L T and Li C D.2009.Progress in remote sensing of vegetation chlorophyll fluorescence.Journal of Remote Sensing,13(5):963-978(张永江,刘良云,侯名语,刘连涛,李存东.2009.植物叶绿素荧光遥感研究进展.遥感学报,13(5):963-978)[DOI:10.3321/j.issn:1007-4619.2009.05.015]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700