不同应力应变状态下弹性软体的摩擦特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Friction Characteristics of Elastic Soft Tissue in Different Stress-Strain States
  • 作者:陈奕钪
  • 英文作者:Chen Yi-kang;Institute of Electrical Engineering,Chinese Academic of Sciences;University of Chinese Academy of Sciences;
  • 关键词:微型机器人 ; 摩擦特性 ; 弹性软体 ; 应力应变状态
  • 英文关键词:microrobot;;friction characteristic;;elastic soft tissue;;stress-strain state
  • 中文刊名:HNLG
  • 英文刊名:Journal of South China University of Technology(Natural Science Edition)
  • 机构:中国科学院电工研究所;中国科学院大学;
  • 出版日期:2013-07-15
  • 出版单位:华南理工大学学报(自然科学版)
  • 年:2013
  • 期:v.41;No.322
  • 基金:国家自然科学基金资助项目(61163042)
  • 语种:中文;
  • 页:HNLG201307006
  • 页数:6
  • CN:07
  • ISSN:44-1251/T
  • 分类号:32-37
摘要
为了揭示弹性软体在动态作用力下的摩擦特性,分别以45钢模具和45钢小球、硅橡胶模具和有机玻璃(PMMA)小球、聚四氟乙烯模具和聚四氟乙烯小球为对偶件,对弹性软体(兔小肠)不同应力应变状态下的摩擦特性进行研究.以45钢模具和45钢小球为对偶件的摩擦试验表明:小肠平均摩擦系数随径向应变呈类周期性变化,表现为随着径向应变的增加而变大.以柔性材料硅橡胶模具和PMMA小球为对偶件的摩擦试验表明:径向应变情况下,随着法向载荷的增加,平均摩擦系数呈增加趋势.以聚四氟乙烯模具和聚四氟乙烯小球为对偶件的摩擦试验表明:轴向应变情况下,随着法向载荷的增加,平均摩擦系数呈减小趋势.
        In order to reveal the friction characteristics of elastic soft tissues under dynamic loads,the small intestine of rabbit is selected as a sample to test its friction characteristics in different stress-strain states,with steel No. 45 base-ball,silastic base-polymethyl methacrylate( PMMA) ball and Teflon base-ball as the coupling parts. The results obtained with steel base-ball coupling part indicate that the average friction coefficient of the small intestine increases with the radial strain in a period-like law,and the results obtained with the silastic base-PMMA ball coupling part indicate that the average friction coefficient increases with the normal load in the presence of radial strain. Moreover,it is found from the results obtained with Teflon base-ball coupling part that the average friction coefficient decreases with the increase of normal load in the presence of axial strain.
引文
[1]林蔚,颜国正,王志武,等.基于微型电机的肠道机器人机构设计[J].机器人,2011,33(3):319-323.Lin Wei,Yan Guo-zheng,Wang Zhi-wu,et al.Mechanism design of an intestinal robot based on micro-motor[J].Robot,2011,33(3):319-323.
    [2]陈扬枝,邢广权,刘文光.管道微机器人驱动器微小弹性啮合轮的传动力[J].华南理工大学学报:自然科学版,2006,34(7):45-49.Chen Yang-zhi,Xing Guang-quan,Liu Wen-guang.Transmission force of micro-elastic mesh wheel in in-tube micro robot actuator[J].Journal of South China University of Technology:Natural Science Edition,2006,34(7):45-49.
    [3]BongSeok Kim,Joon-Shik Park,Chanwoo Moon,et al.A precision robot system with modular actuators and MEMS micro gripper for micro system assembly[J].Journal of Mechanical Science and Technology,2008,22(1):70-76.
    [4]Diller Eric,Pawashe Chytra,Floyd Steven.Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems[J].International Journal of Robotics Research,2011,30(14):1667-1680.
    [5]马官营.人体肠道诊查微型机器人系统及其无线供能技术研究[D].上海:上海交通大学仪器科学与工程系,2008.
    [6]杨岑玉,王铮,王金光,等.仿趋磁细菌的微型机器人研究[J].机器人,2009,31(2):146-150.Yang Cen-yu,Wang Zheng,Wang Jing-guang,et al.On a new type of magnetotactic bacterium-like micro-Robot[J].Robot,2009,31(2):146-150.
    [7]张来斌,王朝晖,张喜迁,等.机械设备故障诊断技术及方法[M].北京:石油工业出版社,2000:4-20.
    [8]王振宇,皮喜田,魏亢,等.肠道生物机器人中驱动装置的刺激控制系统研究[J].中国生物医学工程学报,2010,29(5):731-739.Wang Zhen-yu,Pi Xi-tian,Wei Kang,et al.A stimulation control system for locomotion mechanism of intestinal biorobot[J].Chinese Journal of Biomedical Engineering,2010,29(5):731-739.
    [9]蔡少川,王坤东,马官营.结肠摩擦因数的测试研究[J].润滑与密封,2007,32(3):76-78.Cai Shao-chuan,Wang Kun-dong,Ma Guan-ying.Research on the measurement of frictional coefficient of a pig colon[J].Lubrication Engineering,2007,32(3):76-78.
    [10]Kwon Jiwoon,Cheung Eugene,Park Sukho,et al.Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces[J].Biomedical Materials,2006,1(4):216-220.
    [11]周丁华,赵玮,闫涛,等.人体肠道生物力学特性的研究[J].生物医学工程学杂志,2006,23(5):1017-1019.Zhou Ding-hua,Zhao Wei,Yan Tao,et al.Study on the biomechanical behavior of human intestine[J].Journal of Biomedical Engineering,2006,23(5):1017-1019.
    [12]程九华,Marco Boscolo,林乐健,等.模拟失重大鼠大脑中动脉与肠系膜小动脉生物力学行为的比较[J].生理学报,2009,61(4):386-394.Cheng Jiu-hua,Marco Boscolo,Lin Le-jian,et al.Comparison of biomechanical behavior of cerebral and mesenteric small arteries of simulated microgravity rats[J].Acta Physiologica Sinica,2009,61(4):386-394.
    [13]Zhao Jingbo,Liao Donghua,Gregersen Hans.Phasic and tonic stress-strain data obtained in intact intestinal segment in vitro[J].Dig Dis Sci,2008,53(12):3145-3151.
    [14]Gregersen H,Dr MSc,Kassab G S,et al.The zero-stress state of the gastrointestinal tract:biomechanical and functional implications[J].Digestive Diseases and Sciences,2000,45(12):2271-2281.
    [15]李洁,黄平,罗海堤.体内微机构与动物肠道摩擦实验研究[J].润滑与密封,2006(3):119-122.Li Jie,Huang Ping,Luo Hai-di.Experimental study on friction of micro machines sliding in animal intestines[J].Lubrication Engineering,2006(3):119-122.
    [16]Kim J S,Sung I H,Kim Y T.et al.Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application[J].Tribology Letters,2006,22(2):143-149.
    [17]Lee SungHoon,Kim YoungTae,Yang Sungwook,et al.An optimal micropatterned end-effecter for enhancing frictional force on large intestinal surface[J].Materials&Interfaces,2010,2(5):1308-1316.
    [18]Dowson D.History of tribology[M].2nd ed.London:Professional Engineering Publishing,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700