基于可调谐半导体激光吸收光谱技术的甲烷/空气预混平焰炉温度测量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature Measurement of CH_4/Air Premixed Flat Flame Burner Based on Tunable Diode Laser Absorption Spectroscopy
  • 作者:彭于权 ; 阚瑞峰 ; 许振宇 ; 夏晖晖 ; 聂伟 ; 张步强 ; 裴晓凡
  • 英文作者:PENG Yuquan;KAN Ruifeng;XU Zhenyu;XIA Huihui;NIE Wei;ZHANG Buqiang;PEI Xiaofan;Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:可调谐半导体激光吸收光谱 ; 水汽 ; 温度 ; 平焰炉 ; 吸光度
  • 英文关键词:tunable diode laser absorption spectroscopy;;water vapor;;temperature;;flat flame furnace;;absorbance
  • 中文刊名:GDJY
  • 英文刊名:Journal of Atmospheric and Environmental Optics
  • 机构:中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室;中国科学技术大学;
  • 出版日期:2019-05-15
  • 出版单位:大气与环境光学学报
  • 年:2019
  • 期:v.14;No.78
  • 基金:国家重点研究计划,2016YFC0201100~~
  • 语种:中文;
  • 页:GDJY201903009
  • 页数:7
  • CN:03
  • ISSN:34-1298/O4
  • 分类号:72-78
摘要
燃烧场温度的测量对于燃烧诊断具有重要意义.开展了基于可调谐半导体激光吸收光谱(Tunable diode laser absorption spectroscopy, TDLAS)的在线测温方法研究,基于双光束分时扫描技术,实现了双激光器协同工作与燃烧产物水汽7154.35 cm~(-1)和7467.77 cm~(-1)两条吸收谱线的同时测量,并利用双线积分吸光度比值关系完成温度的精确反演,满足燃烧场温度在线检测应用需要.开展了针对甲烷/空气预混平焰炉火焰温度的实时检测实验研究,并与热电偶进行了测温对比分析,两种方法的测量具有较好的一致性,相对误差小于3.8%,验证了TDLAS技术对燃烧场温度非侵入式快速测量的可行性和可靠性.
        Temperature measurement is significant for combustion diagnosis. An on-line temperature measurement method based on tunable diode laser absorption spectroscopy(TDLAS) has been developed, which achieves dual laser cooperative work and simultaneous measurement of two absorption lines(7154.35 cm~(-1) and 7467.77 cm~(-1)) of combustion product H_2 O by dual beam time dividing scanning strategy. The accurate inversion of the temperature is realized by two-line integral absorbance ratio, which meets theapplication needs of on-line temperature detection of the combustion field. The experimental research on real-time detection of flame temperature in CH_4/air premixed flame furnace was carried out, and the results were compared with the thermocouple measurement, which shows TDLAS and thermocouples have good consistency with relative error less than 3.8%. The feasibility and reliability of non-intrusive and rapid temperature measurement of the combustion field based TDLAS technology have been verified.
引文
[1] Hanson R K, Davidson D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy and Combustion Science, 2014, 44:103-114.
    [2] Xu Zhenyu, Liu Wenqing, Kan Ruifeng, et al. Temperature measurements based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(23):234204(in Chinese).许振宇,刘文清,阚瑞峰,等.基于可调谐半导体激光器吸收光谱的温度测量方法研究[J].物理学报,2012, 61(23):234204.
    [3] Ma L H,Lau L Y, Ren W. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy[J]. Applied Physics B, 2017, 123(3):1-9.
    [4] Gardner J L, Jones T P, Davies M R. A six-wavelength radiation pyrometer[J]. High Temperatures High Pressures,1981, 13:459-466.
    [5] Dai Jingmin,Shi Yiguo, Kang Weimin, et al. Multispectral true temperature measurement for ablative materials[J]. Journal of Astronautics, 1996, 17(3):25-30(in Chinese).戴景民,石义国,康为民,等.烧蚀材料的多光谱真温测量方法[J].宇航学报,1996, 17(3):25-30.
    [6] Eckbreth A C, Dobbs G M,Stufflebeam J H, et al. CARS temperature and species measurements in augmented jet engine exhausts[J]. Applied Optics, 1984, 23(9):1329-1340.
    [7] Zhang Lirong, Hu Zhiyun, Zhang Zhenrong, et al. Temperature measurement in stable combustion field with one-dimensional used CARS[J]. High Power Laser and Particle Beams, 2006, 18(12):2035-2038(in Chinese).张立荣,胡志云,张振荣,等.一维非稳腔空间增强探测CARS技术对稳态燃烧场温度的测量[J].强激光与粒子束,2006, 18(12):2035-2038.
    [8] Schulz C, Sick V. Tracer-LIF diagnostics:quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems[J]. Progress in Energy and Combustion Science, 2005, 31(1):75-121.
    [9] Webber M E, Wang J, Sanders S T, et al. In situ combustion measurements of CO, CO_2, H_2O and temperature using diode laser absorption sensors[J]. Proceedings of the Combustion Institute, 2000, 28(1):407-413.
    [10] Xu Zhenyu. Research on Temperature Measurement and 2D Distribution for Transient Combustion Process by Infrared Absorption Spectroscopy[D]. Hefei:Doctorial Dissertation of Hefei Institute of Physical Science, Chinese Academy of Sciences, 2012(in Chinese).许振宇.瞬态燃烧过程红外激光光谱温度场测量与重构方法研究[D].合肥:中国科学院合肥物质科学研究院博士论文,2012.
    [11] Li Fei, Yu Xilong, Chen Lihong,et al. Temperature and water vapour concentration measurements of CH4/Air premixed flat flame based on TDLAS[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2):40-44(in Chinese).李飞,余西龙,陈立红,等.TDLAS测量甲烷/空气预混平面火焰温度和H20浓度[J].实验流体力学,2009,23(2):40-44.
    [12] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203:3-69.
    [13] Zhou X, Jeffries J B, Hanson R K. Development of a fast temperature sensor for combustion gases using a single tunable diode laser[J]. Applied Physics B, 2005, 81(5):711-722.
    [14] Zhang Guangle. Research on Measurement Method for One-Dimensional Temperature Non-Uniformity Based on Multiple-Line[D]. Hefei:Doctorial Dissertation of University of Chinese Academy of Sciences, 2016(in Chinese).张光乐.基于多吸收线TDLAS的一维温度不均匀性测量方法研究[D].合肥:中国科学院大学博士论文,2016.
    [15] Shaddix C R. Correcting thermocouple measurements for radiation loss:a critical review[R]. Sandia National Labs,CA(US),1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700