乙醇和正丁醇添加剂对喷雾冷却的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of ethanol and n-butanol additives on spray cooling
  • 作者:刘红 ; 何阳 ; 蔡畅 ; 高久良 ; 尹洪超
  • 英文作者:LIU Hong;HE Yang;CAI Chang;GAO Jiuliang;YIN Hongchao;Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology;
  • 关键词:喷雾冷却 ; 乙醇 ; 正丁醇 ; 传热 ; 最佳浓度
  • 英文关键词:spray cooling;;ethanol;;n-butanol;;heat transfer;;optimal concentration
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:海洋能源利用与节能教育部重点实验室大连理工大学能源与动力学院;
  • 出版日期:2019-01-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重点研发计划项目(2017YFA0700300)
  • 语种:中文;
  • 页:HGSZ201901008
  • 页数:8
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:2+75-81
摘要
喷雾冷却是高功率电子器件冷却领域最具有发展前景的散热方式。利用在去离子水中添加不同浓度低醇类(乙醇、正丁醇)添加剂以提升喷雾冷却换热性能的方法,搭建了喷雾冷却实验平台并就添加剂浓度对传热特性的影响进行了实验研究。实验结果表明在去离子水中加入乙醇和正丁醇,存在强化换热的最佳添加剂浓度。在还未达到最佳浓度值之前,添加剂浓度越高,喷雾冷却换热效果越好。乙醇的最佳浓度为4%,正丁醇的最佳浓度为0.5%。
        Spray cooling is the most promising cooling method in the field of high-power electronic device cooling.Different concentrations of low alcohols(ethanol and n-butanol) were added into deionized water to improve the heat transfer performance of spray cooling. The experimental system was established and the effect of concentrationon heat transfer characteristics was investigated. The results reveal that an optimal concentration exists by addinglow-alcohol additives into deionized water. The performance of spray cooling is gradually enhanced with increasingconcentration before the optimum concentration. The optimum concentration of ethanol is 4% and the optimum concentration of n-butanol is 0.5%.
引文
[1]崔万新.微尺度热分析关键技术研究[D].西安:西安电子科技大学, 2007.Cui W X. Research on the key technology of microscale thermal analysis[D]. Xi.an:Xidian University, 2007.
    [2] Pais M R, Chow L C, Mahefkey E T. Surface roughness and its effects on the heat transfer mechanism in spray cooling[J]. Journal of Heat Transfer, 1992, 114(1):211-219.
    [3] Sienski K, Eden R, Schaefer D. 3-D electronic interconnect packaging[C]//Aerospace Applications Conference. IEEE, 1996:363-373.
    [4] Mudawar I. Assessment of high-heat-flux thermal management schemes[J]. Components and Packaging Technologies IEEE Transactions, 2001, 24(2):122-141.
    [5] Kandlikar S, Bapat A. Evaluation of jet impingement, spray and microchannel chip cooling or high heat flux removal[J]. Heat Transfer Engineering, 2007, 28(11):911-923.
    [6] Zhao R, Cheng W L, Liu Q N, et al. Study on heat transfer performance of spray cooling:model and analysis[J]. Heat and Mass Transfer, 2010, 46(8/9):821-829.
    [7] Cheng W L, Zhang W W, Chen H, et al. Spray cooling and flash evaporation cooling:the current development and application[J].Renewable and Sustainable Energy Reviews, 2016, 55:614-628.
    [8]宋玲利,张仁元,毛凌波.纳米流体光热转换特性的研究[J].广东工业大学学报, 2011, 28(2):56-58.Song L L, Zhang R Y, Mao L B. Study on the properties of photothermal conversion of nanofluids[J]. Journal of Guangdong University of Technology, 2011, 28(2):56-58.
    [9] Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20):4105-4116.
    [10] Utomo A T, Poth H, Robbins P T, et al. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids[J].International Journal of Heat and Mass Transfer, 2012, 55(25/26):7772-7781.
    [11]王磊.喷雾冷却及其影响因素的实验与数值研究[D].北京:中国科学院工程热物理研究所, 2009.Wang L. Experimental and numerical study on spray cooling and its influencing factors[D]. Beijing:Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2009.
    [12] Mohapatra S S, Andhare S, Chakraborty S, et al. Experimental study and optimization of air atomized spray with surfactant added water to produce high cooling rate[J]. Journal of Enhanced Heat Transfer, 2012, 19(5):397-408.
    [13] Horacek B, Kiger K T, Kim J. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8):1425-1438.
    [14] Cui Q, Chandra S, Mccahan S. The effect of dissolving gases or solids in water droplets boiling on a hot surface[J]. Journal of Heat Transfer, 2001, 123(4):719-728.
    [15] Cheng W L, Xie B, Han F Y. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant(HAS)and dissolving salt additive(DSA)in spray cooling[J].Experimental Thermal and Fluid Science, 2013, 45:198-202.
    [16] Cui Q. The effect of dissolving salts in water sprays used for quenching a hot surface(Ⅱ):Spray cooling[J]. International Journal of Heat and Mass Transfer, 2003, 125:333-338.
    [17]张雨薇,刘妮.含有添加剂的喷雾冷却研究进展[J].电子元件与材料, 2016,(1):18-22.Zhang Y W, Liu N. Research progress of spray cooling with additives[J]. Electronic Components and Materials, 2016,(1):18-22.
    [18] Ravikumar S V, Jha J M, Sarkar I, et al. Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol[J].Applied Thermal Engineering, 2014, 64(1/2):64-75.
    [19] Bhatt N H, Raj R, Varshney P, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanolTween20-water solution at very high initial surface temperature[J]. International Journal of Heat and Mass Transfer, 2017, 110:330-347.
    [20]章玮玮.紧凑型喷雾冷却系统强化换热的研究[D].合肥:中国科学技术大学, 2017.Zhang W W. Study on intensive heat transfer in a compact spray cooling system[D]. Hefei:University of Science and Technology of China, 2017.
    [21] Cheng W L, Zhang W W, Jiang L J, et al. Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime[J]. Applied Thermal Engineering, 2015,80:160-167.
    [22] Coursey J S. Enhancement of spray cooling heat transfer using extended surfaces and nanofluids[D]. Maryland:University of Maryland, 2007.
    [23]金正一,李凤岐.一元线性参数最小二乘法中斜率及截距的不确定度[J].沈阳理工大学学报, 2000, 19(1):73-76.Jin Z Y, Li F Q. Unceartainty of the gradiene and the intercept in the least square method of the monadic linear parameter[J].Journal of Shenyang Institute of Technology, 2000, 19(1):73-76.
    [24] Moffat R J. Contributions to the theory of single-sample uncertainty analysis[J]. Journal of Fluids Engineering,Transactions of the ASME, 1982, 104:250-258.
    [25] Chen R H, Chow L C, Navedo J E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J].International Journal of Heat and Mass Transfer, 2002, 45(19):4033-4043.
    [26] Somasundaram S, Tay A A O. Comparative study of intermittent spray cooling in single and two phase regimes[J]. International Journal of Thermal Sciences, 2013, 74:174-182.
    [27] Wu Y W, Hou Y D, Wang L, et al. Review on heat transfer and flow characteristics of liquid sodium(1):Single-phase[J]. Progress in Nuclear Energy, 2008, 104:306-316.
    [28] Lu G, Wang X D, Yan W M. Nucleate boiling inside small evaporating droplets:an experimental and numerical study[J].International Journal of Heat and Mass Transfer, 2017, 108(B):2253-2261.
    [29] Breitenbach J, Roisman I V, Tropea C. Heat transfer in the film boiling regime:single drop impact and spray cooling[J].International Journal of Heat and Mass Transfer, 2017, 110:34-42.
    [30] Clay M A, Miksis M J. Effects of surfactant on droplet spreading[J]. Physics of Fluids, 2004, 16(8):3070-3078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700