CO_2管内流动沸腾换热模型评价研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation research on boiling heat transfer model of CO_2 in tube
  • 作者:刘忠彦 ; 孙大汉 ; 金旭 ; 王天皓 ; 马一太
  • 英文作者:LIU Zhongyan;SUN Dahan;JIN Xu;WANG Tianhao;MA Yitai;School of Energy and Power Engineering, Northeast Electric Power University;School of Mechanical Engineering, Tianjin University;
  • 关键词:二氧化碳 ; 流动沸腾 ; 干涸 ; 传热系数
  • 英文关键词:carbon dioxide;;flow boiling;;dry;;heat transfer coefficient
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:东北电力大学能源与动力工程学院;天津大学机械工程学院;
  • 出版日期:2018-09-12 14:55
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:吉林市科技发展创新项目(201750214);; 东北电力大学博士启动基金项目(BSJXM-201507);; 吉林省重点科技研发项目(20180201006SF)
  • 语种:中文;
  • 页:HGSZ201901007
  • 页数:9
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:66-74
摘要
CO_2由于良好的环境特性和优良的热力学特性,被认为是一种理想的替代制冷剂。与传统制冷剂相比,CO_2有着十分不同的流动沸腾换热特性。然而现有的换热关联式都是基于各自的实验数据拟合得出,由于数据点太少和变量参数范围受限导致关联式的预测结果大相径庭。所以建立更加全面的CO_2管内流动沸腾换热数据库对不同换热模型进行对比分析,对于深入了解CO_2管内流动沸腾换热特性和研究更加准确的换热关联式具有重要意义。通过从24篇文献中搜集的4040个实验数据点对6个CO_2的管内流动沸腾换热模型进行对比分析,发现Fang(2013)关联式误差最低为10.6%,并绘制了气液相Reynolds数随管径的变化,气液相Reynolds数的变化的散点图以及Nusselt数随Bond数变化的趋势图,可为深入了解CO_2管内流动沸腾换热特性和将来研究更加准确的新型换热关联式提供参考。
        Due to good environmental characteristics and excellent thermodynamic properties, CO_2 is considered as an ideal alternative refrigerant. Compared with the traditional refrigerant, CO_2 flow boiling heat transfer characteristics is very different. However, the existing heat transfer correlations are based on their respective test data fitting, because the data points are too less and the range of variable parameters is limited, the predicted results are very different. To establish the CO_2 tube flow boiling heat transfer in a more comprehensive database, compare and analyze different heat transfer models, it is of great significance for deep understanding of the boiling heattransfer characteristics of CO_2 in tube and study more accurate heat transfer correlation. There are six correlations analyzed by using 4040 experimental data points of CO_2 flow boiling heat transfer from 24 references, the studyfound that for Fang(2013) correlation minimum error is 10.6%, and draw the variation of gas and liquid Reynoldsnumber with pipe diameter, and the change of gas and liquid Reynolds number scatter plot and the plot of Nusseltnumber change with Bond number, it can provide insight into the CO_2 tube flow boiling heat transfer characteristics and the future research a new type of heat transfer correlations for more accurate to provide the reference.
引文
[1]张超,王坤.制冷空调系统替代工质的发展现状及方向[J].低温与超导, 2005, 33(4):69-72+77.Zhang C, Wang K. The development status and direction of replacing the working quality of refrigeration air-conditioning system[J]. Cryogenics and Superconductivity, 2005, 33(4):69-72+77.
    [2] Rin Y, Yong C K, Min S K, et al. Boiling heat transfer and dryout phenomenon of CO2in a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2003, 45:2353-2361.
    [3] Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli[J]. Int. J. Heat Mass Transfer, 1986,29:351-358.
    [4] Seok H Y, Eun S C, Yun W H, et al. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development[J]. International Journal of Refrigeration, 2004, 27:111-119.
    [5] Gungor K E, Winterton R H S. Simplified general correlation for saturated flow boiling and comparison with data[J]. Chem. Eng.Res. Des., 1987, 65:148-156.
    [6] Jung D S, Mclinden M, Radermacher R, et al. A study of flow boiling heat transfer with refrigerant mixtures[J]. Int. J. Heat Mass Transfer, 1989, 32(9):1751-1764.
    [7] Kandlikar S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J].Journal of Heat Transfer, 1990, 112:219-228.
    [8] Liu Z, Winterton R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. Int. J. Heat Mass Transfer, 1991, 34(11):2759-2766.
    [9] Hwang Y, Kim B H, Radermacher R. Boiling heat transfer correlation for carbon dioxide[C]//College Park(MD, USA):ⅡF-ⅡR Commission B1, with E1&E2. 1997:81-95.
    [10] Park C Y, Hrnjak P S. CO2and R410A flow boiling heat transfer,pressure drop, and flow pattern at flow temperature in a horizontal smooth tube[J]. International Journal of Refrigeration, 2007, 30:166-178.
    [11] Shah M M. Chart correlation for saturated boiling heat transfer:equation and further study[J]. ASHRAE Trans., 1982, 88:185-196.
    [12] Wattelet J P. Heat transfer flow regimes of refrigerants in a horizontal-tube evaporator[C]//Acrc. Tr-55. University of Illinois at Urbana-Champaign, 1994.
    [13] Cheng L X, Gherhardt R, John R T. New prediction methods for CO2Evaporation inside tubes(Ⅱ):An updated general flow boiling heat transfer model based on flow patterns[J]. Int. J. Heat Mass Transfer, 2008, 51:125-135.
    [14] Hoo K O, Hak G K, Geon S R, et al. Flow boiling heat transfer characteristics of carbon dioxide in a horizontal tube[J]. Applied Thermal Engineering, 2008, 28:1022-1030.
    [15] Ducoulombier M, Colasson S, Bonjour J, et al. Carbon dioxide flow boiling in a single microchannel(Ⅱ):Heat transfer[J].Experimental Thermal and Fluid Science, 2011, 35:597-611.
    [16] Hihara E, Tanaka S. Boiling heat transfer of carbon dioxide in horizontal tubes[C]//Proceedings of the 4thⅡR Gustav Lorentzen Conference on Natural Working Fluids. 2000:279-284.
    [17] Kandlikar S G, Steinke M E. Predicting heat transfer during flow boiling in minichannels and microchannels[J]. ASHRAE Trans.,2003, 109:667-676.
    [18] Fang X D, Zhou Z R, Li D K. Review of correlations of flow boiling heat transfer coefficients for carbon dioxide[J].International Journal of Refrigeration, 2013, 36:2017-2039.
    [19] Fang X D. A new correlation of flow boiling heat transfer coefficients for carbon dioxide[J]. Int. J. Heat Mass Transfer,2013, 64:802-807.
    [20] Choi K, Pamitran A S, Oh J T. Two-phase flow heat transfer of CO2vaporization in smooth horizontal minichannels[J].International Journal of Refrigeration, 2007, 30:767-777.
    [21] Wang J, Ogasawara S, Hihara E. Boiling heat transfer and air coil evaporator of carbon dioxide[C]//Proceedings of the 21stⅡR International Congress of Refrigeration.2003.
    [22] Tanaka S, Daiguji H, Takemuka F, et al. Boiling heat transfer of carbon dioxide in horizontal tubes[C]//Proceeding of 38th National Heat Transfer Symposium of Japan. Saitama, Japan, 2001:899-900.
    [23] Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. I&EC Process Design and Development,1966, 5(3):322-329.
    [24] Pamitran A S, Choi K, Oh J T, et al. Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3, and CO2[J]. Int. J. Multiphase Flow,2011, 37:794-801.
    [25]杨建超,柳建华,张良,等.二氧化碳环内沸腾传热系数关联式的分析[J].低温与超导, 2011, 39(11):72-76.Yang J C, Liu J H, Zhang L, et al. Analysis of heat transfer correlation for CO2in-tube flow boiling[J]. Cryogenics&Superconductivity, 2011, 39(11):72-76.
    [26] Arndt E S, Matthias K. Flow pattern and heat transfer characteristics during flow boiling of CO2in a horizontal micro fin tube and comparison with smooth tube data[J]. International Journal of Refrigeration, 2005, 28:1186-1195.
    [27]姜琳琳,柳建华,张良,等.水平微细管内CO2流动沸腾换热特性[J].化工学报, 2018, 69(4):1428-1436.Jiang L L, Liu J H, Zhang L, et al. Investigation of flow boiling heat transfer characteristics of CO2in horizontal micro-tube[J].CIESC Journal, 2018, 69(4):1428-1436.
    [28]赵红艺.二氧化碳在细管径内蒸发换热特性和压降的实验研究[D].北京:清华大学, 2004.Zhao H Y. Experimental study on boiling heat transfer characteristics and pressure drop of CO2[D]. Beijing:Tsinghua University, 2004.
    [29]胡静,杨俊兰,杜明星. CO2-润滑油水平光管内流动沸腾换热特性[J].燃气与热力, 2013, 33(4):A13-A17.Hu J, Yang J L, Du M X. The flow boiling heat transfer characteristics of CO2-lubricating oil in a horizontal smooth tube[J]. Gas&Heat, 2013, 33(4):A13-A17.
    [30]陆至羚,柳建华,张良,等.微细通道内CO2沸腾换热与干涸特性[J].化工进展, 2015, 34(8):2961-2966.Lu Z L, Liu J H, Zhang L, et al. Heat transfer and dry-out characteristics of CO2in mini-channel[J]. Chemical Industry and Engineering Progress, 2015, 34(8):2961-2966.
    [31]张良,柳建华,叶方平,等.细微通道内低温CO2流动沸腾换热特性研究[J].热能动力工程, 2014, 29(3):262-266.Zhang L, Liu J H, Ye F P, et al. Study on heat transfer characteristics of low temperature CO2flow in mini-channel[J].Journal of Engineering for Thermal Energy and Power, 2014, 29(3):262-266.
    [32]杨俊兰,赵丽娜. CO2/润滑油混合物在水平管内流动沸腾换热的实验研究[J].流体机械, 2015, 43(11):1-5.Yang J L, Zhao L N. Experimental study the flow boiling heat transfer of CO2/lubricating oil mixture in horizontal tube[J]. Fluid Machinery, 2015, 43(11):1-5.
    [33]吴晓敏,赵红艺,王维成,等. CO2在细径管内蒸发换热的实验研究[J].工程热物理学报, 2005, 26(5):823-825Wu X M, Zhao H Y, Wang W C, et al. Experimental study on evaporating heat transfer of CO2in thin tube[J]. Journal of Engineering Thermophysics, 2005, 26(5):823-825.
    [34]马富芹.水平微小通道内CO2沸腾换热研究[D].上海:东华大学, 2004.Ma F Q. Boiling heat transfer of CO2in a horizontal mini-tube[D].Shanghai:Donghua University, 2004.
    [35] Hoo K O, Chang H S. Flow boiling heat transfer and pressure drop characteristics of in horizontal tube of 4.57 mm inner diameter[J].Applied Thermal Engineering, 2011, 31:163-172.
    [36] Mastrullo R, Mauro A W, Rosato A, et al. Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube[J]. Int. J. Heat Mass Transfer, 2009, 52:4184-4194.
    [37] Mastrullo R, Mauro A W, Rosato A, et al. Carbon dioxide local heat transfer and pressure drops during flow boiling:assessment of predictive methods[J]. International Journal of Refrigeration,2010, 33:1068-1085.
    [38]宫小彬,柳建华,张良,等.二氧化碳管内流动沸腾换热特性实验研究进展[C]//中国制冷学会学术年会. 2009.Gong X B, Liu J H, Zhang L, et al. Review of experimental study on in-tube carbon dioxide flow boiling heat transfer characteristics[C]//Academic Annual Meeting of China Institute of Refrigeration.2009.
    [39] Gao L, Tomohiro H. An experimental study on flow boiling heat transfer of carbon dioxide and oil mixtures inside a horizontal smooth tube[C]//Proceedings ofⅡR 2005 Vicenza ConferenceThermophysical Properties and Transfer of Refrigerants. Vicenza,2005.
    [40] Kew P A, Cornwell K. Correlations for prediction of boiling heat transfer in small-diameter channels[J]. Appl. Therm. Eng., 1997,17:705-715.
    [41] Cheng P, Wu H Y, Hong F J. Phase-change heat transfer in microsystems[J]. Heat Transfer, 2007, 129:101-107.
    [42] Kandlikar S G, Grande W J. Evolution of micro-channel flow passages-thermohydraulic performance and fabrication technology[J]. Heat Transfer Eng., 2003, 24(1):3-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700