球床结构对PB-FHR中子物理特性的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Pebble Bed Structure on PB-FHR Neutron Physics Characteristics
  • 作者:冀锐敏 ; 严睿 ; 陈兴伟 ; 于世和 ; 周波 ; 邹杨
  • 英文作者:Ji Ruimin;Yan Rui;Chen Xingwei;Yu Shihe;Zhou Bo;Zou Yang;Shanghai Institute of Applied Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:氟盐冷却高温球床堆(PB-FHR) ; 堆积密度 ; 球床结构 ; 反应性
  • 英文关键词:Pebble Bed Fluoride-salt-cooled High-temperature Reactor(PB-FHR);;Packing fraction;;Pebble bed structure;;Reactivity
  • 中文刊名:HDLG
  • 英文刊名:Nuclear Power Engineering
  • 机构:中国科学院上海应用物理研究所;中国科学院大学;
  • 出版日期:2019-03-14 16:07
  • 出版单位:核动力工程
  • 年:2019
  • 期:v.40;No.233
  • 基金:中国科学院TMSR先导专项资助项目(XDA02010000)
  • 语种:中文;
  • 页:HDLG201902005
  • 页数:7
  • CN:02
  • ISSN:51-1158/TL
  • 分类号:20-26
摘要
氟盐冷却高温球床堆(PB-FHR)中燃料球的装卸依靠浮力完成。球床结构受堆芯几何、装卸料速度、熔盐密度、熔盐流动等诸多因素的影响,其不确定性是反应堆物理设计和安全分析中重点考虑的内容。参考装卸料实验台架(PRED)的实验结果,采用蒙特卡罗程序(MCNP)完成了固态燃料钍基熔盐实验堆(TMSR-SF1)球床堆积密度、球床底部形状、冷却剂泄漏导致的液位下降等因素对中子物理关键参数的影响分析。结果表明,堆积密度的增加(50%~64%)导致燃料球装载量的增加、有效增殖因数的增加、温度系数的增加和控制棒价值的减小;相对于平坦型球床底部结构,外锥型结构会随着锥角的增加导致反应性先增加后减小,内锥型和斜面型结构则会引入负反应性;冷却剂泄漏事故引起的堆芯冷却剂液位大幅降低会导致堆积密实幵引入负反应性。
        In the Pebble Bed Fluoride-salt-cooled High-temperature Reactor(PB-FHR), the pebbles are loaded by buoyancy in the coolant. Hence, the packing structures of the pebbles in the core are greatly influenced by various factors such as the core structure, the loading rate, the coolant density, and the coolant flow. The uncertainty of the pebble bed structures is the key issue in the reactor design and safety analysis. To provide a mock up for the Solid Fueled Thorium Molten Salt Reactor(TMSR-SF1), the Pebble Recirculation Experiment Device(PRED) was developed. Packing experiments has been performed under different conditions. For the purpose of verifying the design, the study on pebble structures has been performed based on the TMSR-SF1 design using Monte-Carlo code MCNP. The results quantitatively evaluate the effect of various packing fractions, bottom shapes of the pebble bed and the loss of coolant on the key neutron physics parameters. It shows that, when the packing fraction is increased from 50% to 64%, the effective multiplication factor, the pebbles loaded and the temperature coefficients are increased, but the control rod worth is decreased; the bottom shape of the pebble bed has different effects depending on the structures. The positive cone can cause both increasing and decreasing of the reactivity, and the inclined plane and the negative cone cause a decreasing of the reactivity; the loss of coolant causes a denser packing which results in a decreasing of the reactivity.
引文
[1]ALLEN T,BALL S,BLANDFORD E,et al.Preliminary fluoride salt-cooled high temperature reactor(FHR)subsystems definition,functional requirement definition and licensing basis event(LBE)identification white paper:UCBTH-12-001[R].USA:University of California,Berkeley,2012.
    [2]FORSBERG C,HU LW,RICHARD J,et al.Fluoridesalt-cooled high temperature test reactor(FHTR):goals,options,ownership,requirements,design,licensing,and support facilities:MIT-ANP-TR-154[R].USA:Massachusetts Institute of Technology,2014.
    [3]SUN K,HU L,FORSBERG C.Neutronic design features of a transportable fluoride-salt-cooled high-temperature reactor[J].Journal of Nuclear Engineering and Radiation Science,2016,2:031003-031003-10.
    [4]CHEN XW,ZHANG J,DAI Y,et al.Experimental investigation of the bed structure in liquid salt cooled pebble bed reactor[J].Nuclear Engineering and Design,2018,331:24-31.
    [5]CHEN XW,ZOU Y,YAN R,et al.The packing factor of the pebble bed in molten salt reactor[J].Annals of Nuclear Energy,2018,122:118-124.
    [6]DENIS B P,GOORLEY T,JAMESM,et al.MCNP6TMUser’s Manual:LA-CP-13-00634[R].USA:Los Alamos National Laboratory,2013.
    [7]于世和,严睿,冀锐敏,等.PB-FHR的控制棒布局设计及物理效应[J].核技术,2017,41:010605-1-010605-6.
    [8]AMIN A,NASER V,MOHAMMAD B G.An exact MCNP modeling of pebble bed reactors[J].World Academy of Science,Engineering and Technology,2011,5:1909-1913.
    [9]WEI J.Neutronic Analysis of stochastic distribution of fuel pa rticles in very high temperature gas-cooled reactors.USA:The University of Michigan,2008.
    [10]常鸿,杨永伟,经荥清.球床式高温气冷堆初次临界物理计算的蒙特卡罗斱法模型分析[J].核动力工程,2005,26(5):419-424.
    [11]冀锐敏,严睿,李晓晓,等.球形燃料元件中包覆颗粒的分布效应研究[J].核技术,2017,40:100604-1-100604-7.
    [12]JI R M,DAI Y,ZHU G F,et al.Evaluation of the fraction of delayed photoneutrons for TMSR-SF1[J].Nuclear Science and Techniques,2017,28:135-1-135-8.
    [13]杨璞,邹杨,严睿,等.氟盐冷却高温堆精细中子通量密度分布计算斱法研究[J].原子能科学技术,2017,51:1749-1755.
    [14]BARDET P.The Pebble Recirculation Experiment(PREX) for AHTR[R].USA:Idaho,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700