Choice for graphene as conductive additive for cathode of lithium-ion batteries
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Choice for graphene as conductive additive for cathode of lithium-ion batteries
  • 作者:Ying ; Shi ; Lei ; Wen ; Songfeng ; Pei ; Minjie ; Wu ; Feng ; Li
  • 英文作者:Ying Shi;Lei Wen;Songfeng Pei;Minjie Wu;Feng Li;Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;
  • 英文关键词:Graphene;;Conductive additive;;Lithium-ion batteries;;LiCoO_2 cathode
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.30
  • 基金:financial support from the Strategic Priority Reasearch Program of Chinese Academy of Sciences(No.XDA09010104);; National Natural Science Foundation of China(Nos.51525206,51521091,51372253 and U1401243);; the MOST of China(Nos.2016YFB0100100 and 2014CB932402)
  • 语种:英文;
  • 页:TRQZ201903003
  • 页数:8
  • CN:03
  • ISSN:10-1287/O6
  • 分类号:27-34
摘要
Graphene is a promising conductive additive for the lithium-ion batteries(LIBs) and shows great potential especially with its fast development of the large scale fabrication technology. This work has explored the influence of the incorporation of graphenes prepared by three typical methods on the electrochemical performance of the LiCoO_2-based cathode focusing on the choice for the effective graphene as conductive additive for the cathode of LIBs. Through the comparison of the intrinsic characteristics of graphenes and the electrochemical performance of electrodes with graphene, it is found that graphene with low disorder degree and large size is not suitable for LiCoO_2 cathodes as conductive additive. Conversely, the graphene with oxygen functional groups, relatively low surface area and proper size displays much better electrochemical performance when it is used as conductive additive. This work also demonstrates the transmission mechanism for different graphenes as conductive additives in the LiCoO_2 materials, and further reveals that the conductivity of graphene is not the only factor as conductive additives, surface chemistry and sheet size of the graphene are also essential factors which greatly influence the electrochemical performance of electrode. In addition, when combined with Super P, only 1% graphene is enough to construct an efficient conductive network in the electrode. This study also gives a new sight on the practical application of graphene as conductive additive for high performance LIBs.
        Graphene is a promising conductive additive for the lithium-ion batteries(LIBs) and shows great potential especially with its fast development of the large scale fabrication technology. This work has explored the influence of the incorporation of graphenes prepared by three typical methods on the electrochemical performance of the LiCoO_2-based cathode focusing on the choice for the effective graphene as conductive additive for the cathode of LIBs. Through the comparison of the intrinsic characteristics of graphenes and the electrochemical performance of electrodes with graphene, it is found that graphene with low disorder degree and large size is not suitable for LiCoO_2 cathodes as conductive additive. Conversely, the graphene with oxygen functional groups, relatively low surface area and proper size displays much better electrochemical performance when it is used as conductive additive. This work also demonstrates the transmission mechanism for different graphenes as conductive additives in the LiCoO_2 materials, and further reveals that the conductivity of graphene is not the only factor as conductive additives, surface chemistry and sheet size of the graphene are also essential factors which greatly influence the electrochemical performance of electrode. In addition, when combined with Super P, only 1% graphene is enough to construct an efficient conductive network in the electrode. This study also gives a new sight on the practical application of graphene as conductive additive for high performance LIBs.
引文
[1]R.Van Noorden,Nature 507(2014)26-28.
    [2]E.C.Evarts,Nature 526(2015)S93-S95.
    [3]K.Wang,Y.Wu,S.Luo,X.F.He,J.P.Wang,K.L.Jiang,S.S.Fan,J.Power Sources233(2013)209-215.
    [4]B.Jin,H.B.Gu,W.X.Zhang,K.H.Park,G.P.Sun,J.Solid State Electrochem.12(2008)1549-1554.
    [5]G.P.Wang,Q.T.Zhang,Z.L.Yu,M.Z.Qu,Solid State Ion.179(2008)263-268.
    [6]Z.L.Liu,J.Y.Lee,H.J.Lindner,J.Power Sources 97-8(2001)361-365.
    [7]T.Amaraweera,A.Wijayasinghe,B.E.Mellander,M.Dissanayake,Ionics 23(2017)3001-3011.
    [8]L.N.Liu,X.Yan,Y.H.Wang,D.Zhang,F.Du,C.Z.Wang,G.Chen,Y.J.Wei,Ionics20(2014)1087-1093.
    [9]M.E.Spahr,D.Goers,A.Leone,S.Stallone,E.Grivei,J.Power Sources 196(2011)3404-3413.
    [10]C.L.Gong,Z.G.Xue,S.Wen,Y.S.Ye,X.L.Xie,J.Power Sources 318(2016)93-112.
    [11]T.Q.Chen,L.K.Pan,X.J.Liu,Z.Sun,Mater.Chem.Phys.142(2013)345-349.
    [12]X.L.Li,Y.L.Zhang,H.F.Song,K.Du,H.Wang,H.Y.Li,J.M.Huang,Int.J.Electrochem.Sci.7(2012)7111-7120.
    [13]C.W.Lee,J Ind Eng Chem 12(2006)967-971.
    [14]X.Y.Liu,H.J.Peng,Q.Zhang,J.Q.Huang,X.F.Liu,L.Wang,X.M.He,W.C.Zhu,F.Wei,ACS Sustain.Chem.Eng.2(2014)200-206.
    [15]F.Y.Su,C.H.You,Y.B.He,W.Lv,W.Cui,F.M.Jin,B.H.Li,Q.H.Yang,F.Y.Kang,JMater Chem 20(2010)9644-9650.
    [16]I.Cho,J.Choi,K.Kim,M.H.Ryou,Y.M.Lee,RSC Adv.5(2015)95073-95078.
    [17]M.Takeno,T.Fukutsuka,K.Miyazaki,T.Abe,Carbon 122(2017)202-206.
    [18]W.J.Ren,K.Wang,J.L.Yang,R.Tan,J.T.Hu,H.Guo,Y.D.Duan,J.X.Zheng,Y.Lin,F.Pan,J.Power Sources 331(2016)232-239.
    [19]K.Chen,Q.R.Wang,Z.Q.Niu,J.Chen,J.Energy Chem.27(2018)12-24.
    [20]W.Lv,Z.J.Li,Y.Q.Deng,Q.H.Yang,F.Y.Kang,Energy Storage Mater.2(2016)107-138.
    [21]R.Tang,Q.B.Yun,W.Lv,Y.B.He,C.H.You,F.Y.Su,L.Ke,B.H.Li,F.Y.Kang,Q.H.Yang,Carbon 103(2016)356-362.
    [22]G.Kucinskis,G.Bajars,J.Kleperis,J.Power Sources 240(2013)66-79.
    [23]B.P.N.Nguyen,N.A.Kumar,J.Gaubicher,F.Duclairoir,T.Brousse,O.Crosnier,L.Dubois,G.Bidan,D.Guyomard,B.Lestriez,Adv.Energy Mater.3(2013)1351-1357.
    [24]B.Zhang,Y.Yu,Y.S.Liu,Z.D.Huang,Y.B.He,J.K.Kim,Nanoscale 5(2013)2100-2106.
    [25]T.Liu,S.M.Sun,Z.Zang,X.C.Li,X.L.Sun,F.T.Cao,J.F.Wu,RSC Adv.7(2017)20882-20887.
    [26]F.Y.Su,Y.B.He,B.H.Li,X.C.Chen,C.H.You,W.Wei,W.Lv,Q.H.Yang,F.Y.Kang,Nano Energy 1(2012)429-439.
    [27]J.Ha,S.K.Park,S.H.Yu,A.Jin,B.Jang,S.Bong,I.Kim,Y.E.Sung,Y.Piao,Nanoscale 5(2013)8647-8655.
    [28]K.Chen,F.Zhang,J.Y.Sun,Z.Z.Li,L.Zhang,A.Bachmatiuk,Z.Y.Zou,Z.L.Chen,L.Y.Zhang,M.H.Rümmeli,Z.F.Liu,Energy Storage Mater.12(2018)110-118.
    [29]W.C.Chen,C.Y.Hsieh,Y.T.Weng,F.S.Li,H.C.Wu,N.L.Wu,J.Appl.Electrochem.44(2014)1171-1177.
    [30]P.Guo,H.Song,X.Chen,L.Ma,G.Wang,F.Wang,Anal.Chim.Acta 688(2011)146-155.
    [31]J.M.Zheng,J.Xiao,W.Xu,X.L.Chen,M.Gu,X.H.Li,J.G.Zhang,J.Power Sources227(2013)211-217.
    [32]F.Y.Su,R.Tang,Y.B.He,Y.Zhao,F.Y.Kang,Q.H.Yang,Chin.Sci.Bull.62(2017)3743-3756.
    [33]L.Ke,W.Lv,F.Y.Su,Y.B.He,C.H.You,B.H.Li,Z.J.Li,Q.H.Yang,F.Y.Kang,Carbon92(2015)311-317.
    [34]W.Wei,W.Lv,M.B.Wu,F.Y.Su,Y.B.He,B.H.Li,F.Y.Kang,Q.H.Yang,Carbon57(2013)530-533.
    [35]S.Pei,J.H.Du,F.Li,K.Huang,W.C.Ren,H.-M.Cheng,Method for preparing high-quality graphene,Chinese patent ZL 20110282370.5.2011.
    [36]K.Parvez,Z.S.Wu,R.J.Li,X.J.Liu,R.Graf,X.L.Feng,K.Mullen,J.Am.Chem.Soc.136(2014)6083-6091.
    [37]W.S.Hummers,R.E.Offeman,J.Am.Chem.Soc.80(1958)1339.
    [38]C.M.Chen,Q.Zhang,M.G.Yang,C.H.Huang,Y.G.Yang,M.Z.Wang,Carbon 50(2012)3572-3584.
    [39]K.Dokko,M.Mohamedi,M.Umeda,I.Uchida,J.Electrochem.Soc.150(2003)A425-A429.
    [40]R.Raccichini,A.Varzi,S.Passerini,B.Scrosati,Nat.Mater.14(2015)271-279.
    [41]X.Q.Zhang,X.B.Cheng,Q.Zhang,J.Energy Chem.25(2016)967-984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700